python json jsonl 的用法

2024-08-29 04:52
文章标签 python json 用法 jsonl

本文主要是介绍python json jsonl 的用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JSON

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,广泛用于在客户端和服务器之间传输数据。以下是 Python 中使用 JSON 的一些常见用法:

1. 将 Python 对象转换为 JSON 字符串

使用 json.dumps() 函数将 Python 对象(如字典、列表等)转换为 JSON 字符串。

import json# Python 字典
data = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 转换为 JSON 字符串
json_str = json.dumps(data)
print(json_str)

输出示例:

{"name": "Alice", "age": 30, "city": "New York", "skills": ["Python", "Machine Learning"]}

2. 将 JSON 字符串解析为 Python 对象

使用 json.loads() 函数将 JSON 字符串解析为 Python 对象(如字典、列表等)。

json_str = '{"name": "Alice", "age": 30, "city": "New York", "skills": ["Python", "Machine Learning"]}'# 将 JSON 字符串解析为 Python 字典
data = json.loads(json_str)
print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York', 'skills': ['Python', 'Machine Learning']}

3. 将 Python 对象写入 JSON 文件

使用 json.dump() 函数将 Python 对象写入到 JSON 文件中。

import jsondata = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 将 Python 对象写入 JSON 文件
with open('data.json', 'w') as json_file:json.dump(data, json_file)

4. 从 JSON 文件读取数据

使用 json.load() 函数从 JSON 文件中读取数据并解析为 Python 对象。

import json# 从 JSON 文件读取数据
with open('data.json', 'r') as json_file:data = json.load(json_file)print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York', 'skills': ['Python', 'Machine Learning']}

5. 自定义 JSON 编码

如果你有自定义的类对象并想要将其转换为 JSON,可以通过实现自定义的编码器:

import jsonclass Employee:def __init__(self, name, age, position):self.name = nameself.age = ageself.position = position# 自定义的 JSON 编码器
def encode_employee(obj):if isinstance(obj, Employee):return {'name': obj.name, 'age': obj.age, 'position': obj.position}raise TypeError(f"Object of type {obj.__class__.__name__} is not JSON serializable")# 创建 Employee 对象
employee = Employee("John", 28, "Software Engineer")# 使用自定义编码器将对象转换为 JSON 字符串
json_str = json.dumps(employee, default=encode_employee)
print(json_str)

输出示例:

{"name": "John", "age": 28, "position": "Software Engineer"}

6. 格式化 JSON 输出

使用 json.dumps() 时,可以通过 indent 参数生成格式化的 JSON 字符串,便于阅读。

import jsondata = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 生成格式化的 JSON 字符串
json_str = json.dumps(data, indent=4)
print(json_str)

输出示例:

{"name": "Alice","age": 30,"city": "New York","skills": ["Python","Machine Learning"]
}

7. 处理复杂对象

如果需要序列化更复杂的对象,可以通过自定义 JSONEncoder 类来处理。

import jsonclass Employee:def __init__(self, name, age, position):self.name = nameself.age = ageself.position = positionclass EmployeeEncoder(json.JSONEncoder):def default(self, obj):if isinstance(obj, Employee):return {'name': obj.name, 'age': obj.age, 'position': obj.position}return super().default(obj)employee = Employee("John", 28, "Software Engineer")# 使用自定义的编码器将对象转换为 JSON 字符串
json_str = json.dumps(employee, cls=EmployeeEncoder)
print(json_str)

输出示例:

{"name": "John", "age": 28, "position": "Software Engineer"}

JSONL

JSONL(JSON Lines)是一种简单的文件格式,专门用于存储多个JSON对象,每个对象占用一行。JSONL文件的扩展名通常为 .jsonl.ndjson(Newline Delimited JSON)。这种格式在处理大量结构化数据时非常有效,因为它允许逐行读取和处理数据。

下面是JSONL的常见用法示例,包括如何在Python中读取和写入JSONL格式的数据。

1. JSONL 文件的结构

一个JSONL文件可能看起来如下:

{"name": "Alice", "age": 30, "city": "New York"}
{"name": "Bob", "age": 25, "city": "Los Angeles"}
{"name": "Charlie", "age": 35, "city": "Chicago"}

每一行都是一个有效的JSON对象,行与行之间用换行符 \n 分隔。

2. 读取 JSONL 文件

使用Python读取JSONL文件时,可以逐行处理文件中的JSON对象:

import json# 读取 JSONL 文件
with open('data.jsonl', 'r') as jsonl_file:for line in jsonl_file:# 解析每一行的 JSON 对象data = json.loads(line)print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York'}
{'name': 'Bob', 'age': 25, 'city': 'Los Angeles'}
{'name': 'Charlie', 'age': 35, 'city': 'Chicago'}

3. 写入 JSONL 文件

写入JSONL文件时,可以逐行将多个JSON对象写入文件,每个对象占用一行:

import json# 准备要写入的多个 JSON 对象
data_list = [{"name": "Alice", "age": 30, "city": "New York"},{"name": "Bob", "age": 25, "city": "Los Angeles"},{"name": "Charlie", "age": 35, "city": "Chicago"}
]# 写入 JSONL 文件
with open('data.jsonl', 'w') as jsonl_file:for data in data_list:jsonl_file.write(json.dumps(data) + '\n')

4. 追加写入 JSONL 文件

如果需要追加数据到已有的JSONL文件中,可以使用追加模式 'a'

import json# 要追加写入的 JSON 对象
new_data = {"name": "Diana", "age": 28, "city": "Houston"}# 追加写入 JSONL 文件
with open('data.jsonl', 'a') as jsonl_file:jsonl_file.write(json.dumps(new_data) + '\n')

5. 处理大数据集

由于JSONL格式允许逐行读取和处理数据,特别适合用于处理大数据集。比如当数据量较大时,可以用下面的方式逐行读取并处理,而不需要将整个文件一次性加载到内存中:

import json# 逐行处理大数据集
with open('large_data.jsonl', 'r') as jsonl_file:for line in jsonl_file:data = json.loads(line)# 对每一行的数据进行处理process_data(data)

6. 与Pandas集成

如果你需要将JSONL文件的数据加载到Pandas DataFrame中,Pandas的 read_json 方法也支持读取JSONL格式的数据:

import pandas as pd# 使用 Pandas 读取 JSONL 文件
df = pd.read_json('data.jsonl', lines=True)
print(df)

输出示例:

      name  age         city
0    Alice   30    New York
1      Bob   25  Los Angeles
2  Charlie   35     Chicago

总结

JSONL格式是一种非常实用的数据存储格式,特别适合处理大型、结构化的数据集。使用它的主要优点包括:

  • 逐行读取:有效处理大文件,节省内存。
  • 简便性:每一行都是独立的JSON对象,便于解析和处理。
  • 灵活性:可以很容易地将数据追加到已有文件中。

通过上述方法,您可以轻松地在Python中读取、写入和处理JSONL格式的数据。

这篇关于python json jsonl 的用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116899

相关文章

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化