python json jsonl 的用法

2024-08-29 04:52
文章标签 python json 用法 jsonl

本文主要是介绍python json jsonl 的用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JSON

JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,广泛用于在客户端和服务器之间传输数据。以下是 Python 中使用 JSON 的一些常见用法:

1. 将 Python 对象转换为 JSON 字符串

使用 json.dumps() 函数将 Python 对象(如字典、列表等)转换为 JSON 字符串。

import json# Python 字典
data = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 转换为 JSON 字符串
json_str = json.dumps(data)
print(json_str)

输出示例:

{"name": "Alice", "age": 30, "city": "New York", "skills": ["Python", "Machine Learning"]}

2. 将 JSON 字符串解析为 Python 对象

使用 json.loads() 函数将 JSON 字符串解析为 Python 对象(如字典、列表等)。

json_str = '{"name": "Alice", "age": 30, "city": "New York", "skills": ["Python", "Machine Learning"]}'# 将 JSON 字符串解析为 Python 字典
data = json.loads(json_str)
print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York', 'skills': ['Python', 'Machine Learning']}

3. 将 Python 对象写入 JSON 文件

使用 json.dump() 函数将 Python 对象写入到 JSON 文件中。

import jsondata = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 将 Python 对象写入 JSON 文件
with open('data.json', 'w') as json_file:json.dump(data, json_file)

4. 从 JSON 文件读取数据

使用 json.load() 函数从 JSON 文件中读取数据并解析为 Python 对象。

import json# 从 JSON 文件读取数据
with open('data.json', 'r') as json_file:data = json.load(json_file)print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York', 'skills': ['Python', 'Machine Learning']}

5. 自定义 JSON 编码

如果你有自定义的类对象并想要将其转换为 JSON,可以通过实现自定义的编码器:

import jsonclass Employee:def __init__(self, name, age, position):self.name = nameself.age = ageself.position = position# 自定义的 JSON 编码器
def encode_employee(obj):if isinstance(obj, Employee):return {'name': obj.name, 'age': obj.age, 'position': obj.position}raise TypeError(f"Object of type {obj.__class__.__name__} is not JSON serializable")# 创建 Employee 对象
employee = Employee("John", 28, "Software Engineer")# 使用自定义编码器将对象转换为 JSON 字符串
json_str = json.dumps(employee, default=encode_employee)
print(json_str)

输出示例:

{"name": "John", "age": 28, "position": "Software Engineer"}

6. 格式化 JSON 输出

使用 json.dumps() 时,可以通过 indent 参数生成格式化的 JSON 字符串,便于阅读。

import jsondata = {"name": "Alice","age": 30,"city": "New York","skills": ["Python", "Machine Learning"]
}# 生成格式化的 JSON 字符串
json_str = json.dumps(data, indent=4)
print(json_str)

输出示例:

{"name": "Alice","age": 30,"city": "New York","skills": ["Python","Machine Learning"]
}

7. 处理复杂对象

如果需要序列化更复杂的对象,可以通过自定义 JSONEncoder 类来处理。

import jsonclass Employee:def __init__(self, name, age, position):self.name = nameself.age = ageself.position = positionclass EmployeeEncoder(json.JSONEncoder):def default(self, obj):if isinstance(obj, Employee):return {'name': obj.name, 'age': obj.age, 'position': obj.position}return super().default(obj)employee = Employee("John", 28, "Software Engineer")# 使用自定义的编码器将对象转换为 JSON 字符串
json_str = json.dumps(employee, cls=EmployeeEncoder)
print(json_str)

输出示例:

{"name": "John", "age": 28, "position": "Software Engineer"}

JSONL

JSONL(JSON Lines)是一种简单的文件格式,专门用于存储多个JSON对象,每个对象占用一行。JSONL文件的扩展名通常为 .jsonl.ndjson(Newline Delimited JSON)。这种格式在处理大量结构化数据时非常有效,因为它允许逐行读取和处理数据。

下面是JSONL的常见用法示例,包括如何在Python中读取和写入JSONL格式的数据。

1. JSONL 文件的结构

一个JSONL文件可能看起来如下:

{"name": "Alice", "age": 30, "city": "New York"}
{"name": "Bob", "age": 25, "city": "Los Angeles"}
{"name": "Charlie", "age": 35, "city": "Chicago"}

每一行都是一个有效的JSON对象,行与行之间用换行符 \n 分隔。

2. 读取 JSONL 文件

使用Python读取JSONL文件时,可以逐行处理文件中的JSON对象:

import json# 读取 JSONL 文件
with open('data.jsonl', 'r') as jsonl_file:for line in jsonl_file:# 解析每一行的 JSON 对象data = json.loads(line)print(data)

输出示例:

{'name': 'Alice', 'age': 30, 'city': 'New York'}
{'name': 'Bob', 'age': 25, 'city': 'Los Angeles'}
{'name': 'Charlie', 'age': 35, 'city': 'Chicago'}

3. 写入 JSONL 文件

写入JSONL文件时,可以逐行将多个JSON对象写入文件,每个对象占用一行:

import json# 准备要写入的多个 JSON 对象
data_list = [{"name": "Alice", "age": 30, "city": "New York"},{"name": "Bob", "age": 25, "city": "Los Angeles"},{"name": "Charlie", "age": 35, "city": "Chicago"}
]# 写入 JSONL 文件
with open('data.jsonl', 'w') as jsonl_file:for data in data_list:jsonl_file.write(json.dumps(data) + '\n')

4. 追加写入 JSONL 文件

如果需要追加数据到已有的JSONL文件中,可以使用追加模式 'a'

import json# 要追加写入的 JSON 对象
new_data = {"name": "Diana", "age": 28, "city": "Houston"}# 追加写入 JSONL 文件
with open('data.jsonl', 'a') as jsonl_file:jsonl_file.write(json.dumps(new_data) + '\n')

5. 处理大数据集

由于JSONL格式允许逐行读取和处理数据,特别适合用于处理大数据集。比如当数据量较大时,可以用下面的方式逐行读取并处理,而不需要将整个文件一次性加载到内存中:

import json# 逐行处理大数据集
with open('large_data.jsonl', 'r') as jsonl_file:for line in jsonl_file:data = json.loads(line)# 对每一行的数据进行处理process_data(data)

6. 与Pandas集成

如果你需要将JSONL文件的数据加载到Pandas DataFrame中,Pandas的 read_json 方法也支持读取JSONL格式的数据:

import pandas as pd# 使用 Pandas 读取 JSONL 文件
df = pd.read_json('data.jsonl', lines=True)
print(df)

输出示例:

      name  age         city
0    Alice   30    New York
1      Bob   25  Los Angeles
2  Charlie   35     Chicago

总结

JSONL格式是一种非常实用的数据存储格式,特别适合处理大型、结构化的数据集。使用它的主要优点包括:

  • 逐行读取:有效处理大文件,节省内存。
  • 简便性:每一行都是独立的JSON对象,便于解析和处理。
  • 灵活性:可以很容易地将数据追加到已有文件中。

通过上述方法,您可以轻松地在Python中读取、写入和处理JSONL格式的数据。

这篇关于python json jsonl 的用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116899

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详