Python酷库之旅-第三方库Pandas(106)

2024-08-29 00:36

本文主要是介绍Python酷库之旅-第三方库Pandas(106),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、用法精讲

461、pandas.DataFrame.lt方法

461-1、语法

461-2、参数

461-3、功能

461-4、返回值

461-5、说明

461-6、用法

461-6-1、数据准备

461-6-2、代码示例

461-6-3、结果输出

462、pandas.DataFrame.gt方法

462-1、语法

462-2、参数

462-3、功能

462-4、返回值

462-5、说明

462-6、用法

462-6-1、数据准备

462-6-2、代码示例

462-6-3、结果输出

463、pandas.DataFrame.le方法

463-1、语法

463-2、参数

463-3、功能

463-4、返回值

463-5、说明

463-6、用法

463-6-1、数据准备

463-6-2、代码示例

463-6-3、结果输出

464、pandas.DataFrame.ge方法

464-1、语法

464-2、参数

464-3、功能

464-4、返回值

464-5、说明

464-6、用法

464-6-1、数据准备

464-6-2、代码示例

464-6-3、结果输出

465、pandas.DataFrame.ne方法

465-1、语法

465-2、参数

465-3、功能

465-4、返回值

465-5、说明

465-6、用法

465-6-1、数据准备

465-6-2、代码示例

465-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

461、pandas.DataFrame.lt方法
461-1、语法
# 461、pandas.DataFrame.lt方法
pandas.DataFrame.lt(other, axis='columns', level=None)
Get Less than of dataframe and other, element-wise (binary operator lt).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
461-2、参数

461-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

461-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

461-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

461-3、功能

        用于逐元素地比较DataFrame和另一个对象(如标量、Series、DataFrame等)是否小于(less than)other,并返回一个布尔类型的DataFrame,其中的元素表示比较的结果。

461-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否小于other中的元素。即,如果df[i,j] < other[i,j],则结果DataFrame 中的元素为True,否则为False。

461-5、说明

        无

461-6、用法
461-6-1、数据准备
461-6-2、代码示例
# 461、pandas.DataFrame.lt方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否小于标量4
result = df.lt(4)
print(result)
461-6-3、结果输出
# 461、pandas.DataFrame.lt方法
#       A      B
# 0  True  False
# 1  True  False
# 2  True  False
462、pandas.DataFrame.gt方法
462-1、语法
# 462、pandas.DataFrame.gt方法
pandas.DataFrame.gt(other, axis='columns', level=None)
Get Greater than of dataframe and other, element-wise (binary operator gt).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
462-2、参数

462-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

462-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

462-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

462-3、功能

        用于对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否大于该对象。

462-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否大于other中的对应元素。即,如果df[i,j] > other[i,j],则结果DataFrame的该元素为True,否则为False。

462-5、说明

        无

462-6、用法
462-6-1、数据准备
462-6-2、代码示例
# 462、pandas.DataFrame.gt方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否大于标量4
result = df.gt(4)
print(result)
462-6-3、结果输出
# 462、pandas.DataFrame.gt方法
#        A      B
# 0  False  False
# 1  False   True
# 2  False   True
463、pandas.DataFrame.le方法
463-1、语法
# 463、pandas.DataFrame.le方法
pandas.DataFrame.le(other, axis='columns', level=None)
Get Less than or equal to of dataframe and other, element-wise (binary operator le).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
463-2、参数

463-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

463-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

463-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

463-3、功能

        用于对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否小于等于该对象。

463-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否小于等于other中的对应元素。即,如果df[i,j] <= other[i,j],则结果DataFrame的该元素为True,否则为False。

463-5、说明

        无

463-6、用法
463-6-1、数据准备
463-6-2、代码示例
# 463、pandas.DataFrame.le方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否小于等于标量4
result = df.le(4)
print(result)
463-6-3、结果输出
# 463、pandas.DataFrame.le方法
#       A      B
# 0  True   True
# 1  True  False
# 2  True  False
464、pandas.DataFrame.ge方法
464-1、语法
# 464、pandas.DataFrame.ge方法
pandas.DataFrame.ge(other, axis='columns', level=None)
Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
464-2、参数

464-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

464-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

464-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

464-3、功能

        对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否大于等于该对象。

464-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否大于等于other中的对应元素。即,如果df[i,j] >= other[i,j],则结果 DataFrame 的该元素为True,否则为False。

464-5、说明

        无

464-6、用法
464-6-1、数据准备
464-6-2、代码示例
# 464、pandas.DataFrame.ge方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否大于等于标量4
result = df.ge(4)
print(result)
464-6-3、结果输出
# 464、pandas.DataFrame.ge方法
#        A     B
# 0  False  True
# 1  False  True
# 2  False  True
465、pandas.DataFrame.ne方法
465-1、语法
# 465、pandas.DataFrame.ne方法
pandas.DataFrame.ne(other, axis='columns', level=None)
Get Not equal to of dataframe and other, element-wise (binary operator ne).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
465-2、参数

465-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

465-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

465-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

465-3、功能

        对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否不等于该对象,该方法可以用来快速检查两个数据集之间的差异或验证数据一致性。

465-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否不等于other中的对应元素。即,如果df[i,j] != other[i,j],则结果DataFrame的该元素为True,否则为False。

465-5、说明

        无

465-6、用法
465-6-1、数据准备
465-6-2、代码示例
# 465、pandas.DataFrame.ne方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame中的元素是否不等于标量4
result = df.ne(4)
print(result)
465-6-3、结果输出
# 465、pandas.DataFrame.ne方法
#       A      B
# 0  True  False
# 1  True   True
# 2  True   True

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

这篇关于Python酷库之旅-第三方库Pandas(106)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116333

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

如何更优雅地对接第三方API

如何更优雅地对接第三方API 本文所有示例完整代码地址:https://github.com/yu-linfeng/BlogRepositories/tree/master/repositories/third 我们在日常开发过程中,有不少场景会对接第三方的API,例如第三方账号登录,第三方服务等等。第三方服务会提供API或者SDK,我依稀记得早些年Maven还没那么广泛使用,通常要对接第三方

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点