Python酷库之旅-第三方库Pandas(106)

2024-08-29 00:36

本文主要是介绍Python酷库之旅-第三方库Pandas(106),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、用法精讲

461、pandas.DataFrame.lt方法

461-1、语法

461-2、参数

461-3、功能

461-4、返回值

461-5、说明

461-6、用法

461-6-1、数据准备

461-6-2、代码示例

461-6-3、结果输出

462、pandas.DataFrame.gt方法

462-1、语法

462-2、参数

462-3、功能

462-4、返回值

462-5、说明

462-6、用法

462-6-1、数据准备

462-6-2、代码示例

462-6-3、结果输出

463、pandas.DataFrame.le方法

463-1、语法

463-2、参数

463-3、功能

463-4、返回值

463-5、说明

463-6、用法

463-6-1、数据准备

463-6-2、代码示例

463-6-3、结果输出

464、pandas.DataFrame.ge方法

464-1、语法

464-2、参数

464-3、功能

464-4、返回值

464-5、说明

464-6、用法

464-6-1、数据准备

464-6-2、代码示例

464-6-3、结果输出

465、pandas.DataFrame.ne方法

465-1、语法

465-2、参数

465-3、功能

465-4、返回值

465-5、说明

465-6、用法

465-6-1、数据准备

465-6-2、代码示例

465-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

461、pandas.DataFrame.lt方法
461-1、语法
# 461、pandas.DataFrame.lt方法
pandas.DataFrame.lt(other, axis='columns', level=None)
Get Less than of dataframe and other, element-wise (binary operator lt).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
461-2、参数

461-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

461-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

461-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

461-3、功能

        用于逐元素地比较DataFrame和另一个对象(如标量、Series、DataFrame等)是否小于(less than)other,并返回一个布尔类型的DataFrame,其中的元素表示比较的结果。

461-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否小于other中的元素。即,如果df[i,j] < other[i,j],则结果DataFrame 中的元素为True,否则为False。

461-5、说明

        无

461-6、用法
461-6-1、数据准备
461-6-2、代码示例
# 461、pandas.DataFrame.lt方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否小于标量4
result = df.lt(4)
print(result)
461-6-3、结果输出
# 461、pandas.DataFrame.lt方法
#       A      B
# 0  True  False
# 1  True  False
# 2  True  False
462、pandas.DataFrame.gt方法
462-1、语法
# 462、pandas.DataFrame.gt方法
pandas.DataFrame.gt(other, axis='columns', level=None)
Get Greater than of dataframe and other, element-wise (binary operator gt).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
462-2、参数

462-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

462-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

462-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

462-3、功能

        用于对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否大于该对象。

462-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否大于other中的对应元素。即,如果df[i,j] > other[i,j],则结果DataFrame的该元素为True,否则为False。

462-5、说明

        无

462-6、用法
462-6-1、数据准备
462-6-2、代码示例
# 462、pandas.DataFrame.gt方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否大于标量4
result = df.gt(4)
print(result)
462-6-3、结果输出
# 462、pandas.DataFrame.gt方法
#        A      B
# 0  False  False
# 1  False   True
# 2  False   True
463、pandas.DataFrame.le方法
463-1、语法
# 463、pandas.DataFrame.le方法
pandas.DataFrame.le(other, axis='columns', level=None)
Get Less than or equal to of dataframe and other, element-wise (binary operator le).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
463-2、参数

463-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

463-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

463-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

463-3、功能

        用于对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否小于等于该对象。

463-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否小于等于other中的对应元素。即,如果df[i,j] <= other[i,j],则结果DataFrame的该元素为True,否则为False。

463-5、说明

        无

463-6、用法
463-6-1、数据准备
463-6-2、代码示例
# 463、pandas.DataFrame.le方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否小于等于标量4
result = df.le(4)
print(result)
463-6-3、结果输出
# 463、pandas.DataFrame.le方法
#       A      B
# 0  True   True
# 1  True  False
# 2  True  False
464、pandas.DataFrame.ge方法
464-1、语法
# 464、pandas.DataFrame.ge方法
pandas.DataFrame.ge(other, axis='columns', level=None)
Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
464-2、参数

464-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

464-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

464-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

464-3、功能

        对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否大于等于该对象。

464-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否大于等于other中的对应元素。即,如果df[i,j] >= other[i,j],则结果 DataFrame 的该元素为True,否则为False。

464-5、说明

        无

464-6、用法
464-6-1、数据准备
464-6-2、代码示例
# 464、pandas.DataFrame.ge方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame是否大于等于标量4
result = df.ge(4)
print(result)
464-6-3、结果输出
# 464、pandas.DataFrame.ge方法
#        A     B
# 0  False  True
# 1  False  True
# 2  False  True
465、pandas.DataFrame.ne方法
465-1、语法
# 465、pandas.DataFrame.ne方法
pandas.DataFrame.ne(other, axis='columns', level=None)
Get Not equal to of dataframe and other, element-wise (binary operator ne).Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.Parameters:
other
scalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.Returns:
DataFrame of bool
Result of the comparison.
465-2、参数

465-2-1、other(必须)标量、Series、DataFrame或array-like对象,与DataFrame进行比较的对象,如果other是标量,则DataFrame中的每个元素都会与该标量进行比较;如果是另一个DataFrame或Series,则逐元素进行比较。

465-2-2、axis(可选,默认值为'columns'){0, 1, 'index', 'columns'},确定运算的轴,如果设为0或'index',则对行标签进行对齐操作;如果设为1或'columns',则对列标签进行对齐操作,通常只有在other是DataFrame或Series时才需要指定axis参数。

465-2-3、level(可选,默认值为None)用于在多层索引(MultiIndex)中匹配特定级别,如果DataFrame或other有MultiIndex,level指定要在MultiIndex的哪个级别进行对齐。

465-3、功能

        对DataFrame中的每个元素与另一个对象(如标量、Series、DataFrame等)进行逐元素比较,判断其是否不等于该对象,该方法可以用来快速检查两个数据集之间的差异或验证数据一致性。

465-4、返回值

        返回一个布尔类型的DataFrame,其中每个元素表示原始DataFrame中对应元素是否不等于other中的对应元素。即,如果df[i,j] != other[i,j],则结果DataFrame的该元素为True,否则为False。

465-5、说明

        无

465-6、用法
465-6-1、数据准备
465-6-2、代码示例
# 465、pandas.DataFrame.ne方法
import pandas as pd
# 创建示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 比较DataFrame中的元素是否不等于标量4
result = df.ne(4)
print(result)
465-6-3、结果输出
# 465、pandas.DataFrame.ne方法
#       A      B
# 0  True  False
# 1  True   True
# 2  True   True

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

这篇关于Python酷库之旅-第三方库Pandas(106)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116333

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调