Python(C)图像压缩导图

2024-08-28 20:04
文章标签 python 导图 图像压缩

本文主要是介绍Python(C)图像压缩导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 傅里叶和小波变换
  2. 主成分分析彩色图
  3. 压缩制作不同尺寸图像
  4. K均值和生成式对抗网络压缩
  5. 无损压缩算法
  6. 压缩和解压缩算法
  7. 离散小波变换压缩
  8. 树结构象限算法压缩
  9. 矩阵分解有损压缩算法
  10. 量化模型有损压缩算法
  11. JPEG压缩解压缩算法
    在这里插入图片描述

Python图像压缩

图像压缩可以是有损的,也可以是无损的。无损压缩是档案用途的首选,通常用于医学成像、技术图纸、剪贴画或漫画。有损压缩方法,尤其是在低比特率下使用时,会产生压缩伪影。有损方法特别适用于自然图像,例如照片,在这种应用中,可以接受轻微(有时难以察觉)的保真度损失,以实现比特率的大幅降低。产生可忽略不计的差异的有损压缩可以称为视觉无损。

在给定压缩率(或比特率)下获得最佳图像质量是图像压缩的主要目标,但是,图像压缩方案还有其他重要属性:

可伸缩性通常是指通过操纵比特流或文件(无需解压和重新压缩)实现的质量降低。可伸缩性的其他名称是渐进式编码或嵌入式比特流。尽管其性质相反,但可伸缩性也可以在无损编解码器中找到,通常以从粗到细的像素扫描形式出现。可伸缩性对于在下载图像时预览图像(例如,在 Web 浏览器中)或提供对数据库等的可变质量访问特别有用。可伸缩性有几种类型:

  • 质量渐进或层渐进:比特流连续细化重建图像。
  • 分辨率渐进:首先编码较低的图像分辨率;然后将差异编码为更高分辨率。
  • 分量渐进:首先编码灰度版本;然后添加全色。

感兴趣区域编码:图像的某些部分的编码质量高于其他部分。这可以与可扩展性相结合(首先对这些部分进行编码,然后再对其他部分进行编码)。元信息:压缩数据可能包含有关图像的信息,可用于对图像进行分类、搜索或浏览。此类信息可能包括颜色和纹理统计信息、小预览图像以及作者或版权信息。

处理能力:压缩算法需要不同数量的处理能力来编码和解码。一些高压缩算法需要高处理能力。

压缩方法的质量通常用峰值信噪比来衡量。它衡量的是图像有损压缩引入的噪声量,然而,观看者的主观判断也被视为一项重要衡量标准,或许是最重要的衡量标准。

在我们深入压缩图像之前,让我们创建一个函数,以友好的格式打印文件大小:

def get_size_format(b, factor=1024, suffix="B"):for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]:if b < factor:return f"{b:.2f}{unit}{suffix}"b /= factorreturn f"{b:.2f}Y{suffix}"

接下来,让我们来制作压缩图像的核心函数:

def compress_img(image_name, new_size_ratio=0.9, quality=90, width=None, height=None, to_jpg=True):img = Image.open(image_name)print("[*] Image shape:", img.size)image_size = os.path.getsize(image_name)print("[*] Size before compression:", get_size_format(image_size))if new_size_ratio < 1.0:img = img.resize((int(img.size[0] * new_size_ratio), int(img.size[1] * new_size_ratio)), Image.ANTIALIAS)print("[+] New Image shape:", img.size)elif width and height:img = img.resize((width, height), Image.ANTIALIAS)print("[+] New Image shape:", img.size)filename, ext = os.path.splitext(image_name)if to_jpg:new_filename = f"{filename}_compressed.jpg"else:new_filename = f"{filename}_compressed{ext}"try:img.save(new_filename, quality=quality, optimize=True)except OSError:img = img.convert("RGB")img.save(new_filename, quality=quality, optimize=True)print("[+] New file saved:", new_filename)new_image_size = os.path.getsize(new_filename)print("[+] Size after compression:", get_size_format(new_image_size))saving_diff = new_image_size - image_sizeprint(f"[+] Image size change: {saving_diff/image_size*100:.2f}% of the original image size.")

现在我们已经有了核心函数,让我们使用 argparse 模块将其与命令行参数集成:

if __name__ == "__main__":import argparseparser = argparse.ArgumentParser(description="Simple Python script for compressing and resizing images")parser.add_argument("image", help="Target image to compress and/or resize")parser.add_argument("-j", "--to-jpg", action="store_true", help="Whether to convert the image to the JPEG format")parser.add_argument("-q", "--quality", type=int, help="Quality ranging from a minimum of 0 (worst) to a maximum of 95 (best). Default is 90", default=90)parser.add_argument("-r", "--resize-ratio", type=float, help="Resizing ratio from 0 to 1, setting to 0.5 will multiply width & height of the image by 0.5. Default is 1.0", default=1.0)parser.add_argument("-w", "--width", type=int, help="The new width image, make sure to set it with the `height` parameter")parser.add_argument("-hh", "--height", type=int, help="The new height for the image, make sure to set it with the `width` parameter")args = parser.parse_args()print("="*50)print("[*] Image:", args.image)print("[*] To JPEG:", args.to_jpg)print("[*] Quality:", args.quality)print("[*] Resizing ratio:", args.resize_ratio)if args.width and args.height:print("[*] Width:", args.width)print("[*] Height:", args.height)print("="*50)compress_img(args.image, args.resize_ratio, args.quality, args.width, args.height, args.to_jpg)

现在使用我们的脚本。首先,让我们使用不带任何参数的脚本:

$ python compress_image.py sample-images.png

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: False
[*] Quality: 90
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.png
[+] Size after compression: 379.25KB
[+] Image size change: -10.90% of the original image size.

图像大小从 425.65KB 减少到 379.25KB,减少了约 11%。接下来,让我们尝试传递 -j 以将 PNG 转换为 JPEG:

$ python compress_image.py sample-images.png -j

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 90
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 100.07KB
[+] Image size change: -76.49% of the original image size.

提高了 76.5%。让我们稍微降低质量:

$ python compress_image.py sample-satellite-images.png -j -q 75

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 64.95KB
[+] Image size change: -84.74% of the original image size.

在不影响原始图像分辨率的情况下减少约 85%。让我们尝试将图像的宽度和高度乘以 0.9:

$ python compress_image.py sample-satellite-images.png -j -q 75 -r 0.9

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 0.9
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New Image shape: (857, 446)
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 56.94KB
[+] Image size change: -86.62% of the original image size.

现在设置精确的宽度和高度值:

$ python compress_image.py sample-satellite-images.png -j -q 75 -w 800 -hh 400 

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 1.0
[*] Width: 800
[*] Height: 400
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New Image shape: (800, 400)
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 49.73KB
[+] Image size change: -88.32% of the original image size.

👉更新:亚图跨际

这篇关于Python(C)图像压缩导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115752

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四