Python(C)图像压缩导图

2024-08-28 20:04
文章标签 python 导图 图像压缩

本文主要是介绍Python(C)图像压缩导图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 傅里叶和小波变换
  2. 主成分分析彩色图
  3. 压缩制作不同尺寸图像
  4. K均值和生成式对抗网络压缩
  5. 无损压缩算法
  6. 压缩和解压缩算法
  7. 离散小波变换压缩
  8. 树结构象限算法压缩
  9. 矩阵分解有损压缩算法
  10. 量化模型有损压缩算法
  11. JPEG压缩解压缩算法
    在这里插入图片描述

Python图像压缩

图像压缩可以是有损的,也可以是无损的。无损压缩是档案用途的首选,通常用于医学成像、技术图纸、剪贴画或漫画。有损压缩方法,尤其是在低比特率下使用时,会产生压缩伪影。有损方法特别适用于自然图像,例如照片,在这种应用中,可以接受轻微(有时难以察觉)的保真度损失,以实现比特率的大幅降低。产生可忽略不计的差异的有损压缩可以称为视觉无损。

在给定压缩率(或比特率)下获得最佳图像质量是图像压缩的主要目标,但是,图像压缩方案还有其他重要属性:

可伸缩性通常是指通过操纵比特流或文件(无需解压和重新压缩)实现的质量降低。可伸缩性的其他名称是渐进式编码或嵌入式比特流。尽管其性质相反,但可伸缩性也可以在无损编解码器中找到,通常以从粗到细的像素扫描形式出现。可伸缩性对于在下载图像时预览图像(例如,在 Web 浏览器中)或提供对数据库等的可变质量访问特别有用。可伸缩性有几种类型:

  • 质量渐进或层渐进:比特流连续细化重建图像。
  • 分辨率渐进:首先编码较低的图像分辨率;然后将差异编码为更高分辨率。
  • 分量渐进:首先编码灰度版本;然后添加全色。

感兴趣区域编码:图像的某些部分的编码质量高于其他部分。这可以与可扩展性相结合(首先对这些部分进行编码,然后再对其他部分进行编码)。元信息:压缩数据可能包含有关图像的信息,可用于对图像进行分类、搜索或浏览。此类信息可能包括颜色和纹理统计信息、小预览图像以及作者或版权信息。

处理能力:压缩算法需要不同数量的处理能力来编码和解码。一些高压缩算法需要高处理能力。

压缩方法的质量通常用峰值信噪比来衡量。它衡量的是图像有损压缩引入的噪声量,然而,观看者的主观判断也被视为一项重要衡量标准,或许是最重要的衡量标准。

在我们深入压缩图像之前,让我们创建一个函数,以友好的格式打印文件大小:

def get_size_format(b, factor=1024, suffix="B"):for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]:if b < factor:return f"{b:.2f}{unit}{suffix}"b /= factorreturn f"{b:.2f}Y{suffix}"

接下来,让我们来制作压缩图像的核心函数:

def compress_img(image_name, new_size_ratio=0.9, quality=90, width=None, height=None, to_jpg=True):img = Image.open(image_name)print("[*] Image shape:", img.size)image_size = os.path.getsize(image_name)print("[*] Size before compression:", get_size_format(image_size))if new_size_ratio < 1.0:img = img.resize((int(img.size[0] * new_size_ratio), int(img.size[1] * new_size_ratio)), Image.ANTIALIAS)print("[+] New Image shape:", img.size)elif width and height:img = img.resize((width, height), Image.ANTIALIAS)print("[+] New Image shape:", img.size)filename, ext = os.path.splitext(image_name)if to_jpg:new_filename = f"{filename}_compressed.jpg"else:new_filename = f"{filename}_compressed{ext}"try:img.save(new_filename, quality=quality, optimize=True)except OSError:img = img.convert("RGB")img.save(new_filename, quality=quality, optimize=True)print("[+] New file saved:", new_filename)new_image_size = os.path.getsize(new_filename)print("[+] Size after compression:", get_size_format(new_image_size))saving_diff = new_image_size - image_sizeprint(f"[+] Image size change: {saving_diff/image_size*100:.2f}% of the original image size.")

现在我们已经有了核心函数,让我们使用 argparse 模块将其与命令行参数集成:

if __name__ == "__main__":import argparseparser = argparse.ArgumentParser(description="Simple Python script for compressing and resizing images")parser.add_argument("image", help="Target image to compress and/or resize")parser.add_argument("-j", "--to-jpg", action="store_true", help="Whether to convert the image to the JPEG format")parser.add_argument("-q", "--quality", type=int, help="Quality ranging from a minimum of 0 (worst) to a maximum of 95 (best). Default is 90", default=90)parser.add_argument("-r", "--resize-ratio", type=float, help="Resizing ratio from 0 to 1, setting to 0.5 will multiply width & height of the image by 0.5. Default is 1.0", default=1.0)parser.add_argument("-w", "--width", type=int, help="The new width image, make sure to set it with the `height` parameter")parser.add_argument("-hh", "--height", type=int, help="The new height for the image, make sure to set it with the `width` parameter")args = parser.parse_args()print("="*50)print("[*] Image:", args.image)print("[*] To JPEG:", args.to_jpg)print("[*] Quality:", args.quality)print("[*] Resizing ratio:", args.resize_ratio)if args.width and args.height:print("[*] Width:", args.width)print("[*] Height:", args.height)print("="*50)compress_img(args.image, args.resize_ratio, args.quality, args.width, args.height, args.to_jpg)

现在使用我们的脚本。首先,让我们使用不带任何参数的脚本:

$ python compress_image.py sample-images.png

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: False
[*] Quality: 90
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.png
[+] Size after compression: 379.25KB
[+] Image size change: -10.90% of the original image size.

图像大小从 425.65KB 减少到 379.25KB,减少了约 11%。接下来,让我们尝试传递 -j 以将 PNG 转换为 JPEG:

$ python compress_image.py sample-images.png -j

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 90
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 100.07KB
[+] Image size change: -76.49% of the original image size.

提高了 76.5%。让我们稍微降低质量:

$ python compress_image.py sample-satellite-images.png -j -q 75

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 1.0
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 64.95KB
[+] Image size change: -84.74% of the original image size.

在不影响原始图像分辨率的情况下减少约 85%。让我们尝试将图像的宽度和高度乘以 0.9:

$ python compress_image.py sample-satellite-images.png -j -q 75 -r 0.9

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 0.9
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New Image shape: (857, 446)
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 56.94KB
[+] Image size change: -86.62% of the original image size.

现在设置精确的宽度和高度值:

$ python compress_image.py sample-satellite-images.png -j -q 75 -w 800 -hh 400 

输出:

==================================================
[*] Image: sample-images.png
[*] To JPEG: True
[*] Quality: 75
[*] Resizing ratio: 1.0
[*] Width: 800
[*] Height: 400
==================================================
[*] Image shape: (953, 496)
[*] Size before compression: 425.65KB
[+] New Image shape: (800, 400)
[+] New file saved: sample-images_compressed.jpg
[+] Size after compression: 49.73KB
[+] Image size change: -88.32% of the original image size.

👉更新:亚图跨际

这篇关于Python(C)图像压缩导图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115752

相关文章

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.