Fisher vector学习笔记

2024-08-28 19:58
文章标签 学习 笔记 vector fisher

本文主要是介绍Fisher vector学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    原文:http://blog.csdn.net/carrierlxksuper/article/details/28151013

    最近在看fisher vector的相关知识,fisher vector被广泛应用到了图像的分类,目标识别等领域,特别是结合着BOW model。

    模式识别方法可以分为生成方法和判别方法。前者注重对类条件概率密度函数的建模,而后者聚焦于分类。而Fisher核方法同时具有这两种方法的优点[4]。这里fisher 核和fisher vector是不一样的(感觉像是废话),其实在文章[4]中,作者证明了采用Fisher vector+线性分类器可以等价于Fisher 核的分类器。于是引出了我们下面要讲的Fisher vector。有关Fisher 的一些知识可以参考这篇blog :点击打开链接。

     Fisher vector本质上是用似然函数的梯度vector来表达一幅图像,这个梯度向量的物理意义就是describes the direction in which parameters should be modified to best fit the data[1,2],说白了就是数据拟合中对参数调优的过程。似然函数是哪里来的呢?这里就涉及到上面所说的生成方法了。对于一幅图像 ,有T个描述子(比如SIFT),那么这幅图像就可以表示为:。如果假设这些特征xt符合一定的分布并且这些分布彼此独立,也就是i.i.d(独立同分布)。于是就有:,在这里lamda是参数集合,取对数之后就是:------------1。

     现在需要一组K个高斯分布的线性组合来逼近这些i.i.d.,假设这些高斯混合分布参数也是lamda,于是---------2。在这个式2中Pi表示的就是高斯分布---------------------3,公式2中的omega表示的线性组合的系数,

在这里D是特征矢量的维数,协方差矩阵计算的是不用维数之间的关系。在这这里假设协方差矩阵是对角阵也就是feature的不同dim之间是相互独立的。

      有了公式1,2,3之后,就可以对公式1求导,然后将偏导数,也就是梯度作为fisher vector了。在此之前再定义一个变量:

,表征的是occupancyprobability,也就是特征xt是由第i个高斯分布生成的概率。

下面的公式给出了偏导计算公式:

-------------------------------------4

     值得注意的是上面求出来的都是没有归一化的vector,需要进行归一化操作,正如上一篇blog介绍的那样,由于是在概率空间中,与欧式空间中的归一化不同,引入Fisher matrix进行归一化。

   公式4的三个变量分别引入三个对应的归一化需要的fisher matrix:

------------------------------5

于是最终归一化之后的fisher vector就是:


由于每一个特征是d维的,需要K个高斯分布的线性组合,有公式5,一个Fisher vector的维数为(2*d+1)*K-1维。

    有了Fisher vector,你就可以做图像分类了。当然,在文章[2,3]中都介绍了对这个Fisher vector的进一步改进,在此不再赘述。

参考文献:

[1] Fisher Kernels on Visual Vocabularies for Image Categorization Florent Perronnin and Christopher Dance. CVPR 2007
[2] Improving the Fisher Kernel for Large-Scale Image Classification. Florent Perronnin, Jorge Sanchez, and Thomas Mensink. ECCV 2010
[3] Image Classification with the Fisher Vector: Theory and Practice. Jorge Sánchez , Florent Perronnin , Thomas Mensink , Jakob Verbeek.

以及更早的一篇:

[4] exploiting generative models in discriminative classification

这篇关于Fisher vector学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115734

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件