poj 1840 Eqs 暴力

2024-08-28 17:32
文章标签 poj 暴力 eqs 1840

本文主要是介绍poj 1840 Eqs 暴力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大致题意:
给出一个5元3次方程,输入其5个系数,求它的解的个数
其中系数 ai∈[-50,50] 自变量xi∈[-50,0)∪(0,50]

注意:
若x1 =a, x2=b ,x3=c ,x4=d,x5=e时,与 x1=b, x2=a ,x3=c ,x4 =d, x5=e 代入方程后都得到值0,那么他们视为不同的解。

解题思路:
直观的思路:暴力枚举,O(n^5)
题目Time Limit=5000ms,1ms大约可以执行1000条语句,那么5000ms最多执行500W次
每个变量都有100种可能值,那么暴力枚举,5层循环,就是要执行100^5=100E次,等着TLE吧。。。。

要AC这题,就要对方程做一个变形


即先枚举x1和x2的组合,把所有出现过的 左值 记录打表,然后再枚举x3 x4 x5的组合得到的 右值,如果某个右值等于已经出现的左值,那么我们就得到了一个解
时间复杂度从 O(n^5)降低到 O(n^2+n^3),大约执行100W次


我们先定义一个映射数组hash[],初始化为0
对于方程左边,当x1=m , x2= n时得到sum,则把用hash[]记录sum : hash[sum]++,表示sum这个值出现了1次
之所以是记录“次数”,而不是记录“是否已出现”,
是因为我们不能保证函数的映射为 1对1 映射,更多的是存在 多对1映射。
例如当 a1=a2时,x1=m , x2= n我们得到了sum,但x1=n , x2= m时我们也会得到sum,但是我们说这两个是不同的解,这就是 多对1 的情况了,如果单纯记录sum是否出现过,则会使得 解的个数 减少。

其次,为了使得 搜索sum是否出现 的操作为o(1),我们把sum作为下标,那么hash数组的上界就取决于a1 a2 x1 x2的组合,四个量的极端值均为50
因此上界为 50*50^3+50*50^3=12500000,由于sum也可能为负数,因此我们对hash[]的上界进行扩展,扩展到25000000,当sum<0时,我们令sum+=25000000存储到hash[]
由于数组很大,必须使用全局定义

同时由于数组很大,用int定义必然会MLE,因此要用char或者short定义数组,推荐short

Description

Consider equations having the following form: 
a1x1  3+ a2x2  3+ a3x3  3+ a4x4  3+ a5x5  3=0 
The coefficients are given integers from the interval [-50,50]. 
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 

Determine how many solutions satisfy the given equation. 

Input

The only line of input contains the 5 coefficients a1, a2, a3, a4, a5, separated by blanks.

Output

The output will contain on the first line the number of the solutions for the given equation.

Sample Input

37 29 41 43 47

Sample Output

654
#include<stdio.h>
#include<string.h>
#define N 25000000
short a[25000000];
int main()
{int a1,a2,a3,a4,a5;int i,j,k,s,l=0;while(scanf("%d %d %d %d %d",&a1,&a2,&a3,&a4,&a5)!=EOF){l=0;memset(a,0,sizeof(a));for(i=-50; i<=50; i++){if(!i)continue;for(j=-50; j<=50; j++){if(!j)continue;s=(a1*i*i*i+a2*j*j*j);if(s<0){s+=N;}a[s]++;}}for(i=-50; i<=50; i++){if(!i)continue;for(j=-50; j<=50; j++){if(!j)continue;for(k=-50; k<=50; k++){if(!k)continue;s=a3*i*i*i+a4*j*j*j+a5*k*k*k;if(s<0)s+=N;if(a[s])l+=a[s];}}}printf("%d\n",l);}return 0;
}

这道题目主要易错点就是它容易超时,所以变一下型来进行计算,当时怎么没想到,唉做题太少啊

这篇关于poj 1840 Eqs 暴力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115425

相关文章

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i