本文主要是介绍C++:独占指针(unique_ptr)的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
引入
在C++中,动态内存的管理是通过运算符new/delete来完成的:
- new:在动态内存中为对象分配空间,并且返回一个指向该对象的指针,我们可以选择返回对象对其进行初始化;
- delete:接受一个动态对象的指针,销毁该对象,并且释放与之关联的内存。
动态分配的对象的生命周期与它们在哪里创建是无关的,只有当显式地被释放时,这些对象才会销毁。
当我们对动态内存的使用不当时,会出现很多麻烦:
- 有些内存资源已经被释放,但指向它的指针并没有改变指向(成为了野指针),并且后续还在使用;
- 有些内存资源已经被释放,后期又试图再释放一次(重复释放同一块内存会导致程序运行崩溃);
- 没有及时释放不再使用的内存资源,造成内存泄漏,程序占用的内存资源越来越多。
为了更容易同时也更安全的使用动态内存,C++11提供了智能指针来管理动态对象。智能指针的行为类似于常规指针,重要的区别在于它负责自动释放所指向的对象。
原理
当我们创建一个类对象时,会自动调用类的默认构造函数。当类对象超出作用域时,会自动调用析构函数来释放资源。
智能指针的实现原理是通过RAII(Resource Acquisition Is Initialization,资源获取即初始化)技术来管理动态分配的内存。它通过在对象的构造函数中获取资源,在对象的析构函数中释放资源,来保证资源的正确使用。
unique_ptr
unique_ptr是独占指针,在同一时刻他只允许一个指针指向对象。
std::unique_ptr<int> u1(new int(2));
auto u2=std::make_unique<int>(2);
由于unique_ptr的独占性,不允许对unique_ptr进行拷贝和赋值。
unique_ptr(const unique_ptr&)=delete;
unique_ptr& operator=(const unique_ptr&)=delete;
可以利用std::move将对象所有权从一个unique_ptr转移给另一个unique_ptr。转移后,原来的unique_ptr将不再拥有对内存的控制权,将变为空指针。
//1.使用release来转移
std::unique_ptr<Test> u1=std::make_unique<Test>(11);
std::unique_ptr<Test> u2(u1.release());//2.使用move来转移
std::unique_ptr<Test> u1=std::make_unique<Test>(11);
std::unique_ptr<Test> u2(std::move(u1));
由于unique_ptr不能被拷贝,所以把unique_ptr作为参数类型会报错
void testUniquePtr(std::unique_ptr<Test> &ptr) {}
如果函数的参数不是引用类型,并且外部不再需要使用该指针,我们可以使用move()或者release()把该对象的控制权转移,将其交由调用的函数管理
void testUniquePtr(std::unique_ptr<Test> ptr) {} //作用域结束,将会释放ptr所指向的对象int main(){std::unique_ptr<Test> up = std::make_unique<Test>(100);//将对象的唯一控制权交给了函数//函数结束后,对象被释放testUniquePtr(std::unique_ptr<Test>(std::move(up)));return 0;
}
如果想把把unique_ptr作为参数返回时,可以调用其move()方法,同时还可以把返回的unique_ptr转换为shared_ptr
//使用move操作,而非拷贝构造函数
std::unique_ptr<Test> test(int i) {return std::make_unique<Test>(i);
}int main(){//使用move给up赋值,而非拷贝构造函数std::unique_ptr<Test> up = test(100);//可以把一个对象的控制权交由shared_ptr来管理std::shared_ptr<Test> sp = test(100);return 0;
}
自定义删除器
unique_ptr的模板类型为:
template<typename __Tp,typename __Dp=default_delete<__Tp> >
class unique_ptr{
......
};
模板的参数,第一个为unique_ptr关联的原始指针类型,后者为删除器,默认值为default_delete、删除器是unique_ptr类型的组成部分,可以是普通函数指针、函数对象或者lambda表达式。当需要自定义删除器时,我们需要指定其类型,即__Dp不可省略,我们可以通过decltype来获得其类型。
//1.函数指针
void myDeleter(Test* p){delete p;
}std::unique_ptr<Test,decltype<&myDeleter) > ptr1(new Test(),myDeleter);//2.函数对象
class MyDeleter{
public:void operator()(int *p){delete[] p;}
};
std::unique_ptr<int[],MyDeleter> p2(new int[100],MyDeleter());//3.lambda表达式std::unique_ptr<int,void(*)(int*)> p3(new int(1),[](int *p){ delete p;});
常用函数
get():返回智能指针中保存的原生指针
reset():释放原生指针,并将原指针置空
reset(q):释放原生指针,使智能指针指向新的原生指针。
swap(p,q):交换智能指针p和q的原生指针
独占指针unique_ptr不需要维护引用计数和原子操作,因此比共享指针shared_ptr所消耗的内存更少,性能也更好。
template<class T>
class Unique_Ptr{
private:T* m_p;
public:explicit Unique_Ptr(T* p=nullptr):m_p(p) {}~Unique_Ptr(){if(m_p)delete m_p;}Unique_Ptr(const Unique_Ptr& )=delete;Unique_Ptr& operator=(const Unique_Ptr&)=delete;//移动构造函数Unique_Ptr(Unique_Ptr&& that) noexcept :m_p(that.m_p){that.m_p=nullptr;}//移动赋值函数Unique_Ptr& operator=(Unique_Ptr&& that) noexcept {if(this!=&that){if(m_p!=nullptr){delete m_p;}m_p=that.m_p;that.m_p=nullptr;}return *this;}void swap(Unique_Ptr& that) noexcept {std::swap(m_p,that.m_p);}T* get() const noexcept {return m_p;}T* release() noexcept {T* tmp=m_p;m_p=nullptr;return tmp;}void reset() noexcept {if(m_p!=nullptr)delete m_p;m_p=nullptr; }void reset(T* p) noexcept {if(m_p!=nullptr)delete m_p;m_p=p;}T& operator*() noexcept {return *m_p;}T* operator->() noexcept {return m_p;}explicit operator bool() const noexcept {return m_p != nullptr;}bool operator==(Unique_Ptr const& that) const noexcept {return m_p == that.m_p;}bool operator!=(Unique_Ptr const& that) const noexcept {return m_p != that.m_p;}};
这篇关于C++:独占指针(unique_ptr)的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!