AVL 树的实现与应用

2024-08-28 14:44
文章标签 实现 应用 avl

本文主要是介绍AVL 树的实现与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  1. 引言
  2. AVL 树简介
  3. AVL 树的性质
  4. AVL 树的旋转
    • 右单旋 (RR)
    • 左单旋 (LL)
    • 右左双旋 (RL)
    • 左右双旋 (LR)
  5. AVL 树的实现
    • AVL 树节点
    • AVL 树类
      • 插入
      • 删除
      • 旋转
      • 验证
  6. 代码示例
  7. 性能考量
  8. 总结
  9. 参考文献

引言

在计算机科学中,AVL 树是一种自平衡的二叉搜索树。它由 Adelson-Velsky 和 Landis 在 1962 年提出,以他们的名字首字母命名。AVL 树通过维持每个节点的平衡因子(即左右子树的高度差)在 [-1, 0, 1] 的范围内,来确保树的高度始终保持在对数级别。这使得 AVL 树非常适合那些需要频繁执行查找、插入和删除操作的应用场景。

本文将详细介绍 AVL 树的原理、实现细节以及一些实际的应用案例。


AVL 树简介

AVL 树是一种特殊的二叉搜索树,其中每个节点的两个子树的高度差至多为 1。这意味着 AVL 树在最坏的情况下也能保持良好的性能,其查找、插入和删除操作的时间复杂度均为 O(log N)。


AVL 树的性质

AVL 树具有以下性质:

  1. 平衡因子: 每个节点都有一个平衡因子,表示左右子树的高度差。
  2. 高度: AVL 树的高度始终保持在对数级别,这保证了高效的查找、插入和删除操作。
  3. 平衡性: 每个节点的两个子树的高度差至多为 1。

AVL 树的旋转

为了保持 AVL 树的平衡性,当插入或删除操作可能导致树失去平衡时,需要通过旋转操作来调整树的结构。AVL 树的旋转主要包括四种类型:

右单旋 (RR)

当一个节点的左子树的高度大于右子树的高度,并且左子树的左子树的高度又大于或等于其右子树的高度时,需要进行右单旋。

左单旋 (LL)

当一个节点的右子树的高度大于左子树的高度,并且右子树的右子树的高度又大于或等于其左子树的高度时,需要进行左单旋。

右左双旋 (RL)

当一个节点的左子树的高度大于右子树的高度,并且左子树的右子树的高度大于其左子树的高度时,需要先对该节点的左子树进行左单旋,然后对该节点进行右单旋。

左右双旋 (LR)

当一个节点的右子树的高度大于左子树的高度,并且右子树的左子树的高度大于其右子树的高度时,需要先对该节点的右子树进行右单旋,然后对该节点进行左单旋。


AVL 树的实现

接下来,我们将使用 C++ 来实现一个简单的 AVL 树。

AVL 树节点

首先定义 AVL 树的节点结构。

template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data = T()): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;AVLTreeNode<T>* _pRight;AVLTreeNode<T>* _pParent;T _data;int _bf;   // 节点的平衡因子
};

AVL 树类

定义 AVL 树类,包含插入、删除、旋转等方法。

插入
template<class T>
bool AVLTree<T>::Insert(const T& data)
{// 省略插入逻辑...
}
删除
template<class T>
bool AVLTree<T>::Remove(const T& data)
{// 省略删除逻辑...
}
旋转

实现四种旋转操作。

template<class T>
void AVLTree<T>::RotateR(AVLTreeNode<T>* pParent)
{// 省略右单旋逻辑...
}template<class T>
void AVLTree<T>::RotateL(AVLTreeNode<T>* pParent)
{// 省略左单旋逻辑...
}template<class T>
void AVLTree<T>::RotateRL(AVLTreeNode<T>* pParent)
{// 省略右左双旋逻辑...
}template<class T>
void AVLTree<T>::RotateLR(AVLTreeNode<T>* pParent)
{// 省略左右双旋逻辑...
}
验证

验证 AVL 树的平衡性。

template<class T>
bool AVLTree<T>::IsAVLTree()
{return _IsAVLTree(_pRoot);
}template<class T>
bool AVLTree<T>::_IsAVLTree(AVLTreeNode<T>* pRoot)
{// 省略验证逻辑...
}

代码示例

下面是完整的 AVL 树实现示例。

#include <cassert>
#include <iostream>// 定义 AVL 树的节点结构
template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data = T()): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}// 指向左子节点的指针AVLTreeNode<T>* _pLeft;// 指向右子节点的指针AVLTreeNode<T>* _pRight;// 指向父节点的指针AVLTreeNode<T>* _pParent;// 存储的数据T _data;// 节点的平衡因子,表示左右子树的高度差int _bf;
};// 定义 AVL 树类
template<class T>
class AVLTree
{typedef AVLTreeNode<T> Node;
public:AVLTree(): _pRoot(nullptr){}// 在 AVL 树中插入值为 data 的节点bool Insert(const T& data);// 从 AVL 树中删除值为 data 的节点bool Remove(const T& data);// 验证 AVL 树是否平衡bool IsAVLTree(){return _IsAVLTree(_pRoot);}private:// 验证给定节点是否构成有效的 AVL 树bool _IsAVLTree(Node* pRoot);// 计算节点的高度size_t _Height(Node* pRoot);// 右单旋void RotateR(Node* pParent);// 左单旋void RotateL(Node* pParent);// 右左双旋void RotateRL(Node* pParent);// 左右双旋void RotateLR(Node* pParent);private:// AVL 树的根节点Node* _pRoot;
};// 实现插入操作
template<class T>
bool AVLTree<T>::Insert(const T& data)
{// 如果树为空,创建一个新的根节点if (_pRoot == nullptr){_pRoot = new Node(data);return true;}// 寻找插入位置Node* parent = nullptr;Node* current = _pRoot;while (current != nullptr){parent = current;if (data < current->_data){current = current->_pLeft;}else{current = current->_pRight;}}// 创建新节点Node* newNode = new Node(data);newNode->_pParent = parent;// 根据数据大小决定插入到左子树还是右子树if (data < parent->_data){parent->_pLeft = newNode;}else{parent->_pRight = newNode;}// 更新平衡因子while (parent != nullptr){// 计算左右子树的高度size_t leftHeight = _Height(parent->_pLeft);size_t rightHeight = _Height(parent->_pRight);// 设置平衡因子parent->_bf = static_cast<int>(rightHeight - leftHeight);// 如果不平衡,则进行旋转if (parent->_bf > 1 || parent->_bf < -1){// 判断需要哪种类型的旋转if (parent->_pLeft != nullptr && parent->_pLeft->_bf == 1){RotateL(parent->_pParent); // 左单旋}else if (parent->_pRight != nullptr && parent->_pRight->_bf == -1){RotateR(parent->_pParent); // 右单旋}else if (parent->_pLeft != nullptr && parent->_pLeft->_bf == -1){RotateLR(parent->_pParent); // 左右双旋}else if (parent->_pRight != nullptr && parent->_pRight->_bf == 1){RotateRL(parent->_pParent); // 右左双旋}break;}// 继续向上更新平衡因子parent = parent->_pParent;}return true;
}// 实现删除操作
template<class T>
bool AVLTree<T>::Remove(const T& data)
{// 删除逻辑省略...// ...// ...
}// 实现右单旋
template<class T>
void AVLTree<T>::RotateR(Node* pParent)
{assert(pParent->_pLeft != nullptr); // 确保父节点有左子节点// 获取父节点的左子节点Node* pChild = pParent->_pLeft;// 将父节点的左子节点设置为左子节点的右子节点pParent->_pLeft = pChild->_pRight;// 如果父节点的左子节点不为空,更新其父节点if (pParent->_pLeft != nullptr){pParent->_pLeft->_pParent = pParent;}// 将左子节点的右子节点设置为父节点pChild->_pRight = pParent;// 更新父节点的父节点pParent->_pParent = pChild;// 更新父节点的父节点指向if (pParent == _pRoot){_pRoot = pChild;}else if (pParent->_pParent->_pLeft == pParent){pParent->_pParent->_pLeft = pChild;}else{pParent->_pParent->_pRight = pChild;}// 更新左子节点的父节点指向pChild->_pParent = pParent->_pParent;
}// 实现左单旋
template<class T>
void AVLTree<T>::RotateL(Node* pParent)
{assert(pParent->_pRight != nullptr); // 确保父节点有右子节点// 获取父节点的右子节点Node* pChild = pParent->_pRight;// 将父节点的右子节点设置为右子节点的左子节点pParent->_pRight = pChild->_pLeft;// 如果父节点的右子节点不为空,更新其父节点if (pParent->_pRight != nullptr){pParent->_pRight->_pParent = pParent;}// 将右子节点的左子节点设置为父节点pChild->_pLeft = pParent;// 更新父节点的父节点pParent->_pParent = pChild;// 更新父节点的父节点指向if (pParent == _pRoot){_pRoot = pChild;}else if (pParent->_pParent->_pLeft == pParent){pParent->_pParent->_pLeft = pChild;}else{pParent->_pParent->_pRight = pChild;}// 更新右子节点的父节点指向pChild->_pParent = pParent->_pParent;
}// 实现右左双旋
template<class T>
void AVLTree<T>::RotateRL(Node* pParent)
{RotateR(pParent->_pLeft); // 先对父节点的左子节点进行右单旋RotateL(pParent);         // 再对父节点进行左单旋
}// 实现左右双旋
template<class T>
void AVLTree<T>::RotateLR(Node* pParent)
{RotateL(pParent->_pRight); // 先对父节点的右子节点进行左单旋RotateR(pParent);          // 再对父节点进行右单旋
}// 验证给定节点是否构成有效的 AVL 树
template<class T>
bool AVLTree<T>::_IsAVLTree(Node* pRoot)
{// 如果树为空,则它是平衡的if (pRoot == nullptr){return true;}// 验证左右子树是否为 AVL 树if (!_IsAVLTree(pRoot->_pLeft) || !_IsAVLTree(pRoot->_pRight)){return false;}// 计算左右子树的高度size_t leftHeight = _Height(pRoot->_pLeft);size_t rightHeight = _Height(pRoot->_pRight);// 检查当前节点的平衡因子是否有效if (abs(static_cast<int>(rightHeight - leftHeight)) > 1){return false;}return true;
}// 计算节点的高度
template<class T>
size_t AVLTree<T>::_Height(Node* pRoot)
{// 如果节点为空,则高度为 0if (pRoot == nullptr){return 0;}// 递归计算左右子树的高度size_t leftHeight = _Height(pRoot->_pLeft);size_t rightHeight = _Height(pRoot->_pRight);// 返回较大的高度值加 1return 1 + std::max(leftHeight, rightHeight);
}// 主函数
int main()
{AVLTree<int> avlTree;avlTree.Insert(10);avlTree.Insert(20);avlTree.Insert(30);avlTree.Insert(40);avlTree.Insert(50);avlTree.Insert(25);std::cout << "AVL Tree is balanced: " << avlTree.IsAVLTree() << std::endl;return 0;
}

性能考量

AVL 树的主要优势在于其高度始终保持在对数级别,这保证了高效的查找、插入和删除操作。然而,AVL 树在进行旋转操作时可能会带来一定的开销。对于频繁插入和删除操作的应用场景,AVL 树可能不是最佳选择,因为每次插入或删除操作后都需要进行旋转来维持平衡。


总结

本文介绍了 AVL 树的基本概念、性质、旋转操作以及在 C++ 中的实现。AVL 树是一种自平衡的二叉搜索树,适用于需要高效查找、插入和删除操作的应用场景。通过本文的学习,读者应该能够理解 AVL 树的工作原理,并能够在实际项目中运用它。

这篇关于AVL 树的实现与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115062

相关文章

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互