Linux驱动开发—创建总线,创建属性文件

2024-08-28 12:20

本文主要是介绍Linux驱动开发—创建总线,创建属性文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1.什么是BUS?
      • 1.1总线的主要概念
      • 1.2总线的操作
      • 1.3总线的实现
    • 2.创建总线关键结构体解析
      • 2.1注册总线到系统
      • 2.2 `struct bus_type *bus` 解析
    • 3.实验结果分析
      • 1. `devices` 目录
      • 2. `drivers` 目录
      • 3. `drivers_autoprobe` 文件
      • 4. `drivers_probe` 文件
      • 5. `uevent` 文件
    • 4.在总线目录下创建属性文件

1.什么是BUS?

在 Linux 内核中,总线(Bus)是用于描述系统中各类设备之间连接关系的一个抽象概念。总线不仅仅指物理上的数据传输路径,也可以是逻辑上的连接结构。Linux 内核通过总线来组织和管理系统中的设备,并提供统一的接口和框架,以便设备驱动程序可以与硬件进行交互。

1.1总线的主要概念

  1. 总线类型(Bus Type):
    • 总线类型表示一种特定的总线协议或标准,比如 PCI、I2C、USB、SPI 等。每种总线类型都由内核中的一个 struct bus_type 结构体表示,它定义了该总线类型的操作和行为,如设备注册、探测等。
  2. 设备(Device):
    • 设备是连接在总线上的硬件组件,通常表示一个物理设备。Linux 使用 struct device 来表示系统中的每一个设备,该结构体包含了设备的各种信息,比如设备名称、状态、父设备等。
  3. 驱动程序(Driver):
    • 驱动程序是用于控制设备的代码,通常是与某一特定总线上的设备相对应的。Linux 使用 struct device_driver 表示一个驱动程序,它包括了驱动程序与设备交互的各种函数指针,如探测函数(probe)、移除函数(remove)等。
  4. 设备树(Device Tree):
    • 设备树是描述硬件布局的一个数据结构,通常用于嵌入式系统中。设备树文件通过描述硬件资源和连接关系,帮助内核在启动时正确地识别和初始化硬件设备。

1.2总线的操作

  • 设备注册与匹配: 当一个设备连接到系统时,它会被注册到与之对应的总线类型中。然后,内核会通过设备与驱动程序之间的匹配机制,将设备与相应的驱动程序关联起来。匹配过程基于设备 ID、兼容性字符串或其他总线特定的信息。
  • 探测与初始化: 一旦设备与驱动程序匹配成功,总线的探测函数会被调用,驱动程序将尝试初始化设备。如果探测成功,设备就可以被操作了。
  • 电源管理: 总线通常还负责设备的电源管理,比如设备的挂起和恢复操作。

1.3总线的实现

在 Linux 内核中,每种总线类型通常都有一个独立的子系统。这个子系统负责实现该总线类型的特定操作,如设备的探测、注册、驱动程序的加载和卸载等。

示例代码:

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/device.h>
/*
struct bus_type {const char		*name;const char		*dev_name;struct device		*dev_root;const struct attribute_group **bus_groups;const struct attribute_group **dev_groups;const struct attribute_group **drv_groups;int (*match)(struct device *dev, struct device_driver *drv);int (*uevent)(struct device *dev, struct kobj_uevent_env *env);int (*probe)(struct device *dev);int (*remove)(struct device *dev);void (*shutdown)(struct device *dev);int (*online)(struct device *dev);int (*offline)(struct device *dev);int (*suspend)(struct device *dev, pm_message_t state);int (*resume)(struct device *dev);int (*num_vf)(struct device *dev);const struct dev_pm_ops *pm;const struct iommu_ops *iommu_ops;struct subsys_private *p;struct lock_class_key lock_key;
};*/
//进行名称匹配
static int my_bus_match (struct device *dev, struct device_driver *drv){printk("match success\n");return  (strcmp(dev_name(dev),drv->name)==0);
}
static int my_bus_probe(struct device *dev){printk("new device probe success\n");struct device_driver *drv = dev->driver;    if(drv->probe){drv->probe(dev);}return 0;
}//注册总线的关键结构体
struct bus_type my_bus_type = {.name = "my_bus",.match = my_bus_match,.probe = my_bus_probe,
};static int __init my_bus_init(void)
{int ret =  bus_register(&my_bus_type);printk("bus_register success!\n");return ret;
}static void __exit my_bus_exit(void)
{bus_unregister(&my_bus_type);
}
module_init(my_bus_init);
module_exit(my_bus_exit);MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("A simple example of bus registration");

2.创建总线关键结构体解析

2.1注册总线到系统

使用bus_registerAPI 来完成注册

函数原型:

extern int __must_check bus_register(struct bus_type *bus);

传入的参数为:struct bus_type *bus

2.2 struct bus_type *bus 解析

结构体构成:

struct bus_type {const char		*name;const char		*dev_name;struct device		*dev_root;const struct attribute_group **bus_groups;const struct attribute_group **dev_groups;const struct attribute_group **drv_groups;int (*match)(struct device *dev, struct device_driver *drv);int (*uevent)(struct device *dev, struct kobj_uevent_env *env);int (*probe)(struct device *dev);int (*remove)(struct device *dev);void (*shutdown)(struct device *dev);int (*online)(struct device *dev);int (*offline)(struct device *dev);int (*suspend)(struct device *dev, pm_message_t state);int (*resume)(struct device *dev);int (*num_vf)(struct device *dev);const struct dev_pm_ops *pm;const struct iommu_ops *iommu_ops;struct subsys_private *p;struct lock_class_key lock_key;
};

初学驱动,只需关注几个关键参数:

  • name:总线名称
  • match:匹配函数
  • probe:探测函数
  • remove:移除函数

我们只需实现对应的函数即可

1. my_bus_match 函数

static int my_bus_match(struct device *dev, struct device_driver *drv) {printk("match success\n");return (strcmp(dev_name(dev), drv->name) == 0);
}
  • 函数功能: my_bus_match 函数用于判断一个设备(dev)和一个驱动程序(drv)是否匹配。如果匹配成功,则返回非零值;否则返回零。
  • 参数:
    • struct device *dev: 指向设备对象的指针,表示当前总线上的某个设备。
    • struct device_driver *drv: 指向驱动程序对象的指针,表示当前总线上的某个驱动程序。
  • 工作流程:
    • dev_name(dev): 这是一个内核函数,用于获取设备的名称,实际上是设备的 dev_name 字段。
    • drv->name: 这是驱动程序结构体中的 name 字段,通常由驱动程序的开发者在定义驱动程序时指定。
    • strcmp(dev_name(dev), drv->name) == 0: 使用 strcmp 函数对设备名称和驱动程序名称进行比较。如果两者相等,strcmp 返回 0,表示匹配成功。
    • 如果设备名称与驱动程序名称匹配,my_bus_match 返回 1,否则返回 0。
  • printk("match success\n");:
    • 这是一个内核中的打印函数,用于输出调试信息到内核日志中。当函数执行时,这条消息会被打印出来,表明匹配操作正在进行。

2. my_bus_probe 函数

static int my_bus_probe(struct device *dev) {printk("new device probe success\n");struct device_driver *drv = dev->driver;if (drv->probe) {drv->probe(dev);}return 0;
}
  • 函数功能: my_bus_probe 函数在设备与驱动程序匹配成功后被调用,负责对设备进行初始化。
  • 参数:
    • struct device *dev: 指向设备对象的指针,表示当前要被初始化的设备。
  • 工作流程:
    • struct device_driver *drv = dev->driver;: 通过设备对象的 driver 字段,获取与该设备关联的驱动程序对象。
    • if (drv->probe): 检查驱动程序对象中是否定义了 probe 函数。probe 函数通常由驱动程序开发者实现,用于初始化设备的硬件资源。
    • drv->probe(dev);: 如果 probe 函数存在,则调用它,并将当前设备对象传递给它。通过这个步骤,驱动程序可以对设备进行实际的硬件初始化操作。
  • 返回值: 该函数总是返回 0,表示探测操作成功。

3.实验结果分析

当加载注册总线模块到系统之后

在这里插入图片描述

可以看出在 /sys/bus下出现了注册的新总线名称为 my_bus

进入my_bus 目录,可以看到自动生成的目录和文件

devices 目录: 列出所有连接到该总线的设备。

drivers 目录: 列出所有注册到该总线的驱动程序。

drivers_autoprobe 文件: 控制自动探测新设备。

drivers_probe 文件: 手动触发设备探测过程。

uevent 文件: 生成和管理发送到用户空间的事件通知。

以下是这些文件和目录的详细分析:

1. devices 目录

  • 作用:

    • 该目录包含当前已注册在此总线上的所有设备的符号链接。每个符号链接指向 /sys/devices/ 中相应设备的目录。
    • 这些链接使得用户可以通过 /sys/bus/<bus_name>/devices/ 轻松访问挂载在该总线上的所有设备。
  • 结构:

    • 对于每个连接到该总线的设备,该目录中会生成一个符号链接,如 <device_name>,指向 /sys/devices/ 下的实际设备目录。

2. drivers 目录

  • 作用:

    • 该目录包含所有注册到此总线类型的驱动程序的符号链接。每个符号链接指向 /sys/bus/<bus_name>/drivers/ 中相应驱动程序的目录。
    • 驱动程序通过这些链接来管理它们控制的设备。
  • 结构:

    • 该目录下的每个子目录或符号链接通常以驱动程序名称命名,代表一个特定的驱动程序。
    • 驱动程序目录内可能包含控制和状态文件,例如 bindunbind,用于手动绑定和解绑设备。

3. drivers_autoprobe 文件

  • 作用:

    • 这是一个与自动探测(autoprobe)相关的开关。它决定了是否自动探测并绑定新连接到总线的设备。
    • 当内核检测到新设备时,如果 drivers_autoprobe 处于启用状态(通常为 1),则会自动调用驱动程序的 probe 函数对设备进行初始化。
  • 操作:

    • 可以通过 echo 1 > drivers_autoprobe 启用自动探测。
    • 可以通过 echo 0 > drivers_autoprobe 禁用自动探测。

4. drivers_probe 文件

  • 作用:

    • 这是一个手动触发设备探测(probe)过程的接口。写入该文件可以手动触发驱动程序对未被探测的设备进行探测。
  • 操作:

    • 通过向该文件写入设备的名称,系统将尝试为该设备触发驱动程序的 probe 函数。
    • 例如,echo "<device_name>" > drivers_probe 将手动触发对名为 <device_name> 的设备的探测。

5. uevent 文件

  • 作用:

    • uevent 文件用于向用户空间发送与该总线相关的 uevent,它们通常用于通知 udev 或其他用户空间工具进行设备的自动配置。
    • 这些事件包括设备的添加、移除、绑定、解绑等操作。
  • 操作:

    • 可以手动向该文件写入特定事件,触发用户空间的响应。
    • 常见用法:写入特定字符串以生成自定义 uevent,例如 echo "add" > uevent,会通知用户空间设备已添加。

4.在总线目录下创建属性文件

与kobject 创建属性文件操作基本一致:传送门—Linux驱动开发—设备模型框架 kobject创建属性文件-CSDN博客

在 Linux 内核中,通过 kobjectbus 创建属性文件的方式非常相似。这是因为这两者都基于 sysfs 接口,而 sysfs 是通过 kobject 来管理文件和目录的。

基础结构:

  • 无论是 kobject 还是 bus,属性文件的创建最终都是通过内核提供的 sysfs 文件系统实现的。sysfs 是一个内核对象模型(Kobject-based)文件系统,用于暴露内核中的信息和配置接口给用户空间。

属性文件的定义:

  • 无论使用 kobject 还是 bus,属性文件的定义方式类似,都是通过定义 showstore 函数,然后通过相应的宏(如 __ATTRBUS_ATTR)将它们绑定到属性文件上。

创建和移除属性:

  • sysfs 中的属性文件创建和移除过程本质上都涉及对 kobject 及其相关数据结构的操作。在 bus 中创建属性文件时,其实是通过底层的 kobject 机制来完成的。

示例代码:

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/device.h>
//进行名称匹配
static int my_bus_match (struct device *dev, struct device_driver *drv){printk("match success\n");return  (strcmp(dev_name(dev),drv->name)==0);
}
static int my_bus_probe(struct device *dev){printk("new device probe success\n");struct device_driver *drv = dev->driver;    if(drv->probe){drv->probe(dev);}return 0;
}//注册总线的关键结构体
struct bus_type my_bus_type = {.name = "my_bus",.match = my_bus_match,.probe = my_bus_probe,
};// 在总线目录下创建属性文件 与 kobject 创建属性文件 类似
static ssize_t my_bus_show(struct bus_type *bus, char *buf) {return sprintf(buf, "Hello from the bus attribute!\n");
}static ssize_t my_bus_store(struct bus_type *bus, const char *buf, size_t count) {pr_info("Received from userspace: %s\n", buf);return count;
}
static BUS_ATTR(my_bus_attr, 0664, my_bus_show, my_bus_store);
static int __init my_bus_init(void)
{int ret;// 注册总线ret = bus_register(&my_bus_type);if (ret)return ret;// 添加属性文件到总线ret = bus_create_file(&my_bus_type, &bus_attr_my_bus_attr);if (ret)bus_unregister(&my_bus_type);return ret;
}static void __exit my_bus_exit(void)
{// 移除属性文件bus_remove_file(&my_bus_type, &bus_attr_my_bus_attr);bus_unregister(&my_bus_type);
}
module_init(my_bus_init);
module_exit(my_bus_exit);MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("A simple example of bus registration");

结果如下:

在这里插入图片描述

这篇关于Linux驱动开发—创建总线,创建属性文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114747

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

新特性抢先看! Ubuntu 25.04 Beta 发布:Linux 6.14 内核

《新特性抢先看!Ubuntu25.04Beta发布:Linux6.14内核》Canonical公司近日发布了Ubuntu25.04Beta版,这一版本被赋予了一个活泼的代号——“Plu... Canonical 昨日(3 月 27 日)放出了 Beta 版 Ubuntu 25.04 系统镜像,代号“Pluc

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark