Linux驱动开发—创建总线,创建属性文件

2024-08-28 12:20

本文主要是介绍Linux驱动开发—创建总线,创建属性文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1.什么是BUS?
      • 1.1总线的主要概念
      • 1.2总线的操作
      • 1.3总线的实现
    • 2.创建总线关键结构体解析
      • 2.1注册总线到系统
      • 2.2 `struct bus_type *bus` 解析
    • 3.实验结果分析
      • 1. `devices` 目录
      • 2. `drivers` 目录
      • 3. `drivers_autoprobe` 文件
      • 4. `drivers_probe` 文件
      • 5. `uevent` 文件
    • 4.在总线目录下创建属性文件

1.什么是BUS?

在 Linux 内核中,总线(Bus)是用于描述系统中各类设备之间连接关系的一个抽象概念。总线不仅仅指物理上的数据传输路径,也可以是逻辑上的连接结构。Linux 内核通过总线来组织和管理系统中的设备,并提供统一的接口和框架,以便设备驱动程序可以与硬件进行交互。

1.1总线的主要概念

  1. 总线类型(Bus Type):
    • 总线类型表示一种特定的总线协议或标准,比如 PCI、I2C、USB、SPI 等。每种总线类型都由内核中的一个 struct bus_type 结构体表示,它定义了该总线类型的操作和行为,如设备注册、探测等。
  2. 设备(Device):
    • 设备是连接在总线上的硬件组件,通常表示一个物理设备。Linux 使用 struct device 来表示系统中的每一个设备,该结构体包含了设备的各种信息,比如设备名称、状态、父设备等。
  3. 驱动程序(Driver):
    • 驱动程序是用于控制设备的代码,通常是与某一特定总线上的设备相对应的。Linux 使用 struct device_driver 表示一个驱动程序,它包括了驱动程序与设备交互的各种函数指针,如探测函数(probe)、移除函数(remove)等。
  4. 设备树(Device Tree):
    • 设备树是描述硬件布局的一个数据结构,通常用于嵌入式系统中。设备树文件通过描述硬件资源和连接关系,帮助内核在启动时正确地识别和初始化硬件设备。

1.2总线的操作

  • 设备注册与匹配: 当一个设备连接到系统时,它会被注册到与之对应的总线类型中。然后,内核会通过设备与驱动程序之间的匹配机制,将设备与相应的驱动程序关联起来。匹配过程基于设备 ID、兼容性字符串或其他总线特定的信息。
  • 探测与初始化: 一旦设备与驱动程序匹配成功,总线的探测函数会被调用,驱动程序将尝试初始化设备。如果探测成功,设备就可以被操作了。
  • 电源管理: 总线通常还负责设备的电源管理,比如设备的挂起和恢复操作。

1.3总线的实现

在 Linux 内核中,每种总线类型通常都有一个独立的子系统。这个子系统负责实现该总线类型的特定操作,如设备的探测、注册、驱动程序的加载和卸载等。

示例代码:

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/device.h>
/*
struct bus_type {const char		*name;const char		*dev_name;struct device		*dev_root;const struct attribute_group **bus_groups;const struct attribute_group **dev_groups;const struct attribute_group **drv_groups;int (*match)(struct device *dev, struct device_driver *drv);int (*uevent)(struct device *dev, struct kobj_uevent_env *env);int (*probe)(struct device *dev);int (*remove)(struct device *dev);void (*shutdown)(struct device *dev);int (*online)(struct device *dev);int (*offline)(struct device *dev);int (*suspend)(struct device *dev, pm_message_t state);int (*resume)(struct device *dev);int (*num_vf)(struct device *dev);const struct dev_pm_ops *pm;const struct iommu_ops *iommu_ops;struct subsys_private *p;struct lock_class_key lock_key;
};*/
//进行名称匹配
static int my_bus_match (struct device *dev, struct device_driver *drv){printk("match success\n");return  (strcmp(dev_name(dev),drv->name)==0);
}
static int my_bus_probe(struct device *dev){printk("new device probe success\n");struct device_driver *drv = dev->driver;    if(drv->probe){drv->probe(dev);}return 0;
}//注册总线的关键结构体
struct bus_type my_bus_type = {.name = "my_bus",.match = my_bus_match,.probe = my_bus_probe,
};static int __init my_bus_init(void)
{int ret =  bus_register(&my_bus_type);printk("bus_register success!\n");return ret;
}static void __exit my_bus_exit(void)
{bus_unregister(&my_bus_type);
}
module_init(my_bus_init);
module_exit(my_bus_exit);MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("A simple example of bus registration");

2.创建总线关键结构体解析

2.1注册总线到系统

使用bus_registerAPI 来完成注册

函数原型:

extern int __must_check bus_register(struct bus_type *bus);

传入的参数为:struct bus_type *bus

2.2 struct bus_type *bus 解析

结构体构成:

struct bus_type {const char		*name;const char		*dev_name;struct device		*dev_root;const struct attribute_group **bus_groups;const struct attribute_group **dev_groups;const struct attribute_group **drv_groups;int (*match)(struct device *dev, struct device_driver *drv);int (*uevent)(struct device *dev, struct kobj_uevent_env *env);int (*probe)(struct device *dev);int (*remove)(struct device *dev);void (*shutdown)(struct device *dev);int (*online)(struct device *dev);int (*offline)(struct device *dev);int (*suspend)(struct device *dev, pm_message_t state);int (*resume)(struct device *dev);int (*num_vf)(struct device *dev);const struct dev_pm_ops *pm;const struct iommu_ops *iommu_ops;struct subsys_private *p;struct lock_class_key lock_key;
};

初学驱动,只需关注几个关键参数:

  • name:总线名称
  • match:匹配函数
  • probe:探测函数
  • remove:移除函数

我们只需实现对应的函数即可

1. my_bus_match 函数

static int my_bus_match(struct device *dev, struct device_driver *drv) {printk("match success\n");return (strcmp(dev_name(dev), drv->name) == 0);
}
  • 函数功能: my_bus_match 函数用于判断一个设备(dev)和一个驱动程序(drv)是否匹配。如果匹配成功,则返回非零值;否则返回零。
  • 参数:
    • struct device *dev: 指向设备对象的指针,表示当前总线上的某个设备。
    • struct device_driver *drv: 指向驱动程序对象的指针,表示当前总线上的某个驱动程序。
  • 工作流程:
    • dev_name(dev): 这是一个内核函数,用于获取设备的名称,实际上是设备的 dev_name 字段。
    • drv->name: 这是驱动程序结构体中的 name 字段,通常由驱动程序的开发者在定义驱动程序时指定。
    • strcmp(dev_name(dev), drv->name) == 0: 使用 strcmp 函数对设备名称和驱动程序名称进行比较。如果两者相等,strcmp 返回 0,表示匹配成功。
    • 如果设备名称与驱动程序名称匹配,my_bus_match 返回 1,否则返回 0。
  • printk("match success\n");:
    • 这是一个内核中的打印函数,用于输出调试信息到内核日志中。当函数执行时,这条消息会被打印出来,表明匹配操作正在进行。

2. my_bus_probe 函数

static int my_bus_probe(struct device *dev) {printk("new device probe success\n");struct device_driver *drv = dev->driver;if (drv->probe) {drv->probe(dev);}return 0;
}
  • 函数功能: my_bus_probe 函数在设备与驱动程序匹配成功后被调用,负责对设备进行初始化。
  • 参数:
    • struct device *dev: 指向设备对象的指针,表示当前要被初始化的设备。
  • 工作流程:
    • struct device_driver *drv = dev->driver;: 通过设备对象的 driver 字段,获取与该设备关联的驱动程序对象。
    • if (drv->probe): 检查驱动程序对象中是否定义了 probe 函数。probe 函数通常由驱动程序开发者实现,用于初始化设备的硬件资源。
    • drv->probe(dev);: 如果 probe 函数存在,则调用它,并将当前设备对象传递给它。通过这个步骤,驱动程序可以对设备进行实际的硬件初始化操作。
  • 返回值: 该函数总是返回 0,表示探测操作成功。

3.实验结果分析

当加载注册总线模块到系统之后

在这里插入图片描述

可以看出在 /sys/bus下出现了注册的新总线名称为 my_bus

进入my_bus 目录,可以看到自动生成的目录和文件

devices 目录: 列出所有连接到该总线的设备。

drivers 目录: 列出所有注册到该总线的驱动程序。

drivers_autoprobe 文件: 控制自动探测新设备。

drivers_probe 文件: 手动触发设备探测过程。

uevent 文件: 生成和管理发送到用户空间的事件通知。

以下是这些文件和目录的详细分析:

1. devices 目录

  • 作用:

    • 该目录包含当前已注册在此总线上的所有设备的符号链接。每个符号链接指向 /sys/devices/ 中相应设备的目录。
    • 这些链接使得用户可以通过 /sys/bus/<bus_name>/devices/ 轻松访问挂载在该总线上的所有设备。
  • 结构:

    • 对于每个连接到该总线的设备,该目录中会生成一个符号链接,如 <device_name>,指向 /sys/devices/ 下的实际设备目录。

2. drivers 目录

  • 作用:

    • 该目录包含所有注册到此总线类型的驱动程序的符号链接。每个符号链接指向 /sys/bus/<bus_name>/drivers/ 中相应驱动程序的目录。
    • 驱动程序通过这些链接来管理它们控制的设备。
  • 结构:

    • 该目录下的每个子目录或符号链接通常以驱动程序名称命名,代表一个特定的驱动程序。
    • 驱动程序目录内可能包含控制和状态文件,例如 bindunbind,用于手动绑定和解绑设备。

3. drivers_autoprobe 文件

  • 作用:

    • 这是一个与自动探测(autoprobe)相关的开关。它决定了是否自动探测并绑定新连接到总线的设备。
    • 当内核检测到新设备时,如果 drivers_autoprobe 处于启用状态(通常为 1),则会自动调用驱动程序的 probe 函数对设备进行初始化。
  • 操作:

    • 可以通过 echo 1 > drivers_autoprobe 启用自动探测。
    • 可以通过 echo 0 > drivers_autoprobe 禁用自动探测。

4. drivers_probe 文件

  • 作用:

    • 这是一个手动触发设备探测(probe)过程的接口。写入该文件可以手动触发驱动程序对未被探测的设备进行探测。
  • 操作:

    • 通过向该文件写入设备的名称,系统将尝试为该设备触发驱动程序的 probe 函数。
    • 例如,echo "<device_name>" > drivers_probe 将手动触发对名为 <device_name> 的设备的探测。

5. uevent 文件

  • 作用:

    • uevent 文件用于向用户空间发送与该总线相关的 uevent,它们通常用于通知 udev 或其他用户空间工具进行设备的自动配置。
    • 这些事件包括设备的添加、移除、绑定、解绑等操作。
  • 操作:

    • 可以手动向该文件写入特定事件,触发用户空间的响应。
    • 常见用法:写入特定字符串以生成自定义 uevent,例如 echo "add" > uevent,会通知用户空间设备已添加。

4.在总线目录下创建属性文件

与kobject 创建属性文件操作基本一致:传送门—Linux驱动开发—设备模型框架 kobject创建属性文件-CSDN博客

在 Linux 内核中,通过 kobjectbus 创建属性文件的方式非常相似。这是因为这两者都基于 sysfs 接口,而 sysfs 是通过 kobject 来管理文件和目录的。

基础结构:

  • 无论是 kobject 还是 bus,属性文件的创建最终都是通过内核提供的 sysfs 文件系统实现的。sysfs 是一个内核对象模型(Kobject-based)文件系统,用于暴露内核中的信息和配置接口给用户空间。

属性文件的定义:

  • 无论使用 kobject 还是 bus,属性文件的定义方式类似,都是通过定义 showstore 函数,然后通过相应的宏(如 __ATTRBUS_ATTR)将它们绑定到属性文件上。

创建和移除属性:

  • sysfs 中的属性文件创建和移除过程本质上都涉及对 kobject 及其相关数据结构的操作。在 bus 中创建属性文件时,其实是通过底层的 kobject 机制来完成的。

示例代码:

#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/kobject.h>
#include <linux/sysfs.h>
#include <linux/device.h>
//进行名称匹配
static int my_bus_match (struct device *dev, struct device_driver *drv){printk("match success\n");return  (strcmp(dev_name(dev),drv->name)==0);
}
static int my_bus_probe(struct device *dev){printk("new device probe success\n");struct device_driver *drv = dev->driver;    if(drv->probe){drv->probe(dev);}return 0;
}//注册总线的关键结构体
struct bus_type my_bus_type = {.name = "my_bus",.match = my_bus_match,.probe = my_bus_probe,
};// 在总线目录下创建属性文件 与 kobject 创建属性文件 类似
static ssize_t my_bus_show(struct bus_type *bus, char *buf) {return sprintf(buf, "Hello from the bus attribute!\n");
}static ssize_t my_bus_store(struct bus_type *bus, const char *buf, size_t count) {pr_info("Received from userspace: %s\n", buf);return count;
}
static BUS_ATTR(my_bus_attr, 0664, my_bus_show, my_bus_store);
static int __init my_bus_init(void)
{int ret;// 注册总线ret = bus_register(&my_bus_type);if (ret)return ret;// 添加属性文件到总线ret = bus_create_file(&my_bus_type, &bus_attr_my_bus_attr);if (ret)bus_unregister(&my_bus_type);return ret;
}static void __exit my_bus_exit(void)
{// 移除属性文件bus_remove_file(&my_bus_type, &bus_attr_my_bus_attr);bus_unregister(&my_bus_type);
}
module_init(my_bus_init);
module_exit(my_bus_exit);MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("A simple example of bus registration");

结果如下:

在这里插入图片描述

这篇关于Linux驱动开发—创建总线,创建属性文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114747

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

Python在固定文件夹批量创建固定后缀的文件(方法详解)

《Python在固定文件夹批量创建固定后缀的文件(方法详解)》文章讲述了如何使用Python批量创建后缀为.md的文件夹,生成100个,代码中需要修改的路径、前缀和后缀名,并提供了注意事项和代码示例,... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5.