使用RMBG-1.4进行抠图(背景移除)

2024-08-28 08:12

本文主要是介绍使用RMBG-1.4进行抠图(背景移除),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用RMBG-1.4进行抠图(背景移除)

说明:

  • 首次发表日期:2024-08-28
  • RMBG-1.4 Hugging Face 地址: https://huggingface.co/briaai/RMBG-1.4

准备工作

创建环境并安装依赖::

# 如果`~/.local/lib/python3.10/site-packages`里面存在python模块,需要禁用。
## 可以直接删除该文件夹,或者:
## 参考:https://stackoverflow.com/questions/62352699/conda-uses-local-packages
export PYTHONUSERBASE=intentionally-disabledconda create -n rmbg python=3.10
conda activate rmbg
pip install torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu121# 官方文档为:pip install -qr https://huggingface.co/briaai/RMBG-1.4/resolve/main/requirements.txt 
pip install pillow numpy typing scikit-image huggingface_hub transformers>=4.39.1

下载模型权重:

export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download --resume-download briaai/RMBG-1.4

运行推理

下图为将会使用的图片:

先导入可能用到的模块

from PIL import Image
import torch
from skimage import io
import torch.nn.functional as F
import numpy as np

使用transformers的pipeline子模块

from transformers import pipeline
image_path = "https://farm5.staticflickr.com/4007/4322154488_997e69e4cf_z.jpg"
pipe = pipeline("image-segmentation", model="briaai/RMBG-1.4", trust_remote_code=True)
pillow_mask = pipe(image_path, return_mask = True) # outputs a pillow mask
pillow_image = pipe(image_path) # applies mask on input and returns a pillow image
pillow_mask

在这里插入图片描述

pillow_image

在这里插入图片描述

直接使用transformers推理

from transformers import AutoModelForImageSegmentation
from torchvision.transforms.functional import normalize
model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4",trust_remote_code=True)
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:if len(im.shape) < 3:im = im[:, :, np.newaxis]# orig_im_size=im.shape[0:2]im_tensor = torch.tensor(im, dtype=torch.float32).permute(2,0,1)im_tensor = F.interpolate(torch.unsqueeze(im_tensor,0), size=model_input_size, mode='bilinear')image = torch.divide(im_tensor,255.0)image = normalize(image,[0.5,0.5,0.5],[1.0,1.0,1.0])return imagedef postprocess_image(result: torch.Tensor, im_size: list)-> np.ndarray:result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear') ,0)ma = torch.max(result)mi = torch.min(result)result = (result-mi)/(ma-mi)im_array = (result*255).permute(1,2,0).cpu().data.numpy().astype(np.uint8)im_array = np.squeeze(im_array)return im_arraydevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)# prepare input
image_path = "https://farm5.staticflickr.com/4007/4322154488_997e69e4cf_z.jpg"
orig_im = io.imread(image_path)
orig_im_size = orig_im.shape[0:2]
model_input_size = [1024,1024]
image = preprocess_image(orig_im, model_input_size).to(device)# inference 
result=model(image)# post process
result_image = postprocess_image(result[0][0], orig_im_size)
# save result
pil_im = Image.fromarray(result_image)
pil_im

在这里插入图片描述

no_bg_image = Image.new("RGBA", pil_im.size, (0,0,0,0))
orig_image = Image.fromarray(orig_im)
# orig_image = Image.open(image_path)
no_bg_image.paste(orig_image, mask=pil_im)
no_bg_image

在这里插入图片描述

这篇关于使用RMBG-1.4进行抠图(背景移除)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114218

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的