多线程中的Lock小结

2024-08-28 00:08
文章标签 多线程 小结 lock

本文主要是介绍多线程中的Lock小结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.lock和synchronized的区别

1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

2.java.util.concurrent.locks包下常用的类

首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

复制代码
public interface Lock {void lock();void lockInterruptibly() throws InterruptedException;boolean tryLock();boolean tryLock(long time, TimeUnit unit) throws InterruptedException;void unlock();}
复制代码


Lock接口中每个方法的使用: 

lock()tryLock()tryLock(long time, TimeUnit unit)lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。

 

四个获取锁方法的区别:

  • lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。
  • tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。
  • tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。
  • lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

 

直接使用lock接口的话,我们需要实现很多方法,不太方便,ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法,ReentrantLock,意思是“可重入锁”。

 

以下是ReentrantLock的使用案例:

例子1,lock()的正确使用方法

复制代码
package cn.itcast_01_mythread.thread.lock;import java.util.ArrayList;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;public class MyLockTest {private static ArrayList<Integer> arrayList = new ArrayList<Integer>();static Lock lock = new ReentrantLock(); // 注意这个地方public static <E> void main(String[] args) {new Thread() {public void run() {Thread thread = Thread.currentThread();lock.lock();try {System.out.println(thread.getName() + "得到了锁");for (int i = 0; i < 5; i++) {arrayList.add(i);}} catch (Exception e) {// TODO: handle exception} finally {System.out.println(thread.getName() + "释放了锁");lock.unlock();}};}.start();new Thread() {public void run() {Thread thread = Thread.currentThread();lock.lock();try {System.out.println(thread.getName() + "得到了锁");for (int i = 0; i < 5; i++) {arrayList.add(i);}} catch (Exception e) {// TODO: handle exception} finally {System.out.println(thread.getName() + "释放了锁");lock.unlock();}};}.start();}}
复制代码

运行结果:

Thread-0得到了锁
Thread-0释放了锁
Thread-1得到了锁
Thread-1释放了锁

即正常的加锁操作。

 

例子2,tryLock()的使用方法

复制代码
package cn.itcast_01_mythread.thread.lock;import java.util.ArrayList;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;/*** 观察现象:一个线程获得锁后,另一个线程取不到锁,不会一直等待* @author**/
public class MyTryLock {private static ArrayList<Integer> arrayList = new ArrayList<Integer>();static Lock lock = new ReentrantLock(); // 注意这个地方public static void main(String[] args) {new Thread() {public void run() {Thread thread = Thread.currentThread();boolean tryLock = lock.tryLock();System.out.println(thread.getName()+" "+tryLock);if (tryLock) {try {System.out.println(thread.getName() + "得到了锁");for (int i = 0; i < 5; i++) {arrayList.add(i);}} catch (Exception e) {// TODO: handle exception} finally {System.out.println(thread.getName() + "释放了锁");lock.unlock();}}};}.start();new Thread() {public void run() {Thread thread = Thread.currentThread();boolean tryLock = lock.tryLock();System.out.println(thread.getName()+" "+tryLock);if (tryLock) {try {System.out.println(thread.getName() + "得到了锁");for (int i = 0; i < 5; i++) {arrayList.add(i);}} catch (Exception e) {// TODO: handle exception} finally {System.out.println(thread.getName() + "释放了锁");lock.unlock();}}};}.start();}}
复制代码

 

运行结果:

Thread-0 true
Thread-0得到了锁
Thread-0释放了锁
Thread-1 true
Thread-1得到了锁
Thread-1释放了锁

或者

Thread-0 true
Thread-0得到了锁
Thread-1 false
Thread-0释放了锁

可见结果不定,尝试获取锁,可能成功,可能失败。

 

例子3,lockInterruptibly()响应中断的使用方法:

复制代码
package cn.itcast_01_mythread.thread.lock;import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;/*** 观察现象:如果thread-0得到了锁,阻塞。。。thread-1尝试获取锁,如果拿不到,则可以被中断等待* * @author* */
public class MyInterruptibly {private Lock lock = new ReentrantLock();public static void main(String[] args) {MyInterruptibly test = new MyInterruptibly();MyThread thread0 = new MyThread(test);MyThread thread1 = new MyThread(test);thread0.start();thread1.start();try {Thread.sleep(2000);} catch (InterruptedException e) {e.printStackTrace();}thread1.interrupt();System.out.println("=====================");}public void insert(Thread thread) throws InterruptedException {lock.lockInterruptibly(); // 注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出try {System.out.println(thread.getName() + "得到了锁");long startTime = System.currentTimeMillis();for (;;) {if (System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)break;// 插入数据
            }} finally {System.out.println(Thread.currentThread().getName() + "执行finally");lock.unlock();System.out.println(thread.getName() + "释放了锁");}}
}class MyThread extends Thread {private MyInterruptibly test = null;public MyThread(MyInterruptibly test) {this.test = test;}@Overridepublic void run() {try {test.insert(Thread.currentThread());} catch (Exception e) {System.out.println(Thread.currentThread().getName() + "被中断");}}}
复制代码

 

运行结果:

Thread-0得到了锁
=====================
Thread-1被中断

我们可以看到,Thread-0得到了锁,一直不释放,此时Thread-1可以手动停止。

 

 

接下来我们说一下ReadWriteLock,ReadWriteLock也是一个接口,在它里面只定义了两个方法:

复制代码
public interface ReadWriteLock {/*** Returns the lock used for reading.* @return the lock used for reading.*/Lock readLock();/*** Returns the lock used for writing.* @return the lock used for writing.*/Lock writeLock();
}
复制代码

 

一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()writeLock()用来获取读锁和写锁。

 

 

下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。但是采用synchronized关键字来实现同步的话,就会导致一个问题:

如果多个线程都只是进行读操作,当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

总的来说,也就是说Lock提供了比synchronized更多的功能。

 

例子1:假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果

复制代码
package cn.itcast_01_mythread.thread.lock;/*** 一个线程又要读又要写,用synchronize来实现的话,读写操作都只能锁住后一个线程一个线程地进行* @author**/
public class MySynchronizedReadWrite {public static void main(String[] args)  {final MySynchronizedReadWrite test = new MySynchronizedReadWrite();new Thread(){public void run() {test.get(Thread.currentThread());};}.start();new Thread(){public void run() {test.get(Thread.currentThread());};}.start();}  public synchronized void get(Thread thread) {long start = System.currentTimeMillis();int i=0;while(System.currentTimeMillis() - start <= 1) {i++;if(i%4==0){System.out.println(thread.getName()+"正在进行写操作");}else {System.out.println(thread.getName()+"正在进行读操作");    }}System.out.println(thread.getName()+"读写操作完毕");}}
复制代码

 

运行结果:

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行写操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0读写操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行写操作
Thread-1读写操作完毕

我们可以看到,只有Thread-0读写操作完毕之后,Thread-1才会进行读写操作,不会有交叉。

 

例子2:改成用读写锁的话:

复制代码
package cn.itcast_01_mythread.thread.lock;import java.util.concurrent.locks.ReentrantReadWriteLock;/*** 使用读写锁,可以实现读写分离锁定,读操作并发进行,写操作锁定单个线程* * 如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。* 如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。* @author**/
public class MyReentrantReadWriteLock {private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();public static void main(String[] args)  {final MyReentrantReadWriteLock test = new MyReentrantReadWriteLock();new Thread(){public void run() {test.get(Thread.currentThread());test.write(Thread.currentThread());};}.start();new Thread(){public void run() {test.get(Thread.currentThread());test.write(Thread.currentThread());};}.start();}  /*** 读操作,用读锁来锁定* @param thread*/public void get(Thread thread) {rwl.readLock().lock();try {long start = System.currentTimeMillis();while(System.currentTimeMillis() - start <= 1) {System.out.println(thread.getName()+"正在进行读操作");}System.out.println(thread.getName()+"读操作完毕");} finally {rwl.readLock().unlock();}}/*** 写操作,用写锁来锁定* @param thread*/public void write(Thread thread) {rwl.writeLock().lock();;try {long start = System.currentTimeMillis();while(System.currentTimeMillis() - start <= 1) {System.out.println(thread.getName()+"正在进行写操作");}System.out.println(thread.getName()+"写操作完毕");} finally {rwl.writeLock().unlock();}}
}
复制代码

 

运行结果:

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0读操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1读操作完毕
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1正在进行写操作
Thread-1写操作完毕
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0正在进行写操作
Thread-0写操作完毕

可以看到,当Thread-0进行读操作时,Thread-1也可以进行读操作,而写操作不能同时进行。

注意:

如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

  

3.Lock和synchronized的选择

1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

5)Lock可以提高多个线程进行读操作的效率。

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

这篇关于多线程中的Lock小结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113177

相关文章

Flutter打包APK的几种方式小结

《Flutter打包APK的几种方式小结》Flutter打包不同于RN,Flutter可以在AndroidStudio里编写Flutter代码并最终打包为APK,本篇主要阐述涉及到的几种打包方式,通... 目录前言1. android原生打包APK方式2. Flutter通过原生工程打包方式3. Futte

Docker镜像pull失败两种解决办法小结

《Docker镜像pull失败两种解决办法小结》有时候我们在拉取Docker镜像的过程中会遇到一些问题,:本文主要介绍Docker镜像pull失败两种解决办法的相关资料,文中通过代码介绍的非常详细... 目录docker 镜像 pull 失败解决办法1DrQwWCocker 镜像 pull 失败解决方法2总

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Ollama Python 使用小结

《OllamaPython使用小结》Ollama提供了PythonSDK,使得开发者能够在Python环境中轻松集成和使用本地运行的模型进行自然语言处理任务,具有一定的参考价值,感兴趣的可以了解一... 目录安装 python SDK启动本地服务使用 Ollama 的 Python SDK 进行推理自定义客

java String.join()的使用小结

《javaString.join()的使用小结》String.join()是Java8引入的一个实用方法,用于将多个字符串按照指定分隔符连接成一个字符串,本文主要介绍了javaString.join... 目录1. 方法定义2. 基本用法2.1 拼接多个字符串2.2 拼接集合中的字符串3. 使用场景和示例3

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

Qt 中 isHidden 和 isVisible 的区别与使用小结

《Qt中isHidden和isVisible的区别与使用小结》Qt中的isHidden()和isVisible()方法都用于查询组件显示或隐藏状态,然而,它们有很大的区别,了解它们对于正确操... 目录1. 基础概念2. 区别清见3. 实际案例4. 注意事项5. 总结1. 基础概念Qt 中的 isHidd

SQL中的CASE WHEN用法小结

《SQL中的CASEWHEN用法小结》文章详细介绍了SQL中的CASEWHEN函数及其用法,包括简单CASEWHEN和CASEWHEN条件表达式两种形式,并通过多个实际场景展示了如何使用CASEWH... 目录一、简单CASE WHEN函数:二、CASE WHEN条件表达式函数三、常用场景场景1:不同状态展

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

Maven pom.xml文件中build,plugin标签的使用小结

《Mavenpom.xml文件中build,plugin标签的使用小结》本文主要介绍了Mavenpom.xml文件中build,plugin标签的使用小结,文中通过示例代码介绍的非常详细,对大家的学... 目录<build> 标签Plugins插件<build> 标签<build> 标签是 pom.XML