美团2024秋招第二场笔试[测开方向]0817详细解析C++代码

本文主要是介绍美团2024秋招第二场笔试[测开方向]0817详细解析C++代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三道题目1.5小时

  • 小美送外卖
  • 最大公约数是不是素数
  • 数组的极差

小美送外卖

小美在处理外卖订单的时候,遇到一个任务,需要判断一个给定的字符串是否符合特定的分类规则,具体来说,需要判断一个字符串是否是一个有效的电子邮箱,IP地址或者电话号码。

  • 电子邮件地址的格式为:username@domain.com,其中 username 和 domain 只能包含字母、数字和下划线。
  • IP 地址的格式为:xxx.xxx.xxx.xxx,其中 xxx 是 0 到 255 之间的整数。
  • 电话号码的格式为:+国家码-区号-号码 ,其中 国家码 和 区号 只能包含数字,号码 可以包含数字和’#’。

**输入:**第一行包含数据组数n,接下来n行,每一行输入一个需要判断的字符串
**输出:**对于每一行,输出判断的结果,如果是有效的电子邮箱,输出email;如果是有效的IP地址,输出ip;如果是有效的电话号码,输出phone;如果都不是,输出invalid

美团容易出这种模拟题,但是不可以轻易小瞧
这题逻辑复杂,可以使用正则表达式来检查字符串是否符合给定的格式:电子邮件地址、IP 地址或电话号码。

首先了解一下常用的正则表达式语法:

字符含义
^匹配字符串的开始
$匹配字符串的结束
[a-z]匹配一个小写字母
[A-Z]匹配一个大写字母
[0-9]匹配一个数字
+匹配前一个字符一次或多次
*匹配前一个字符0次或多次
.匹配任意字符,除了换行符
\\.匹配一个.,因为.在正则表达式中是特殊字符,所以需要转义
\\d特殊字符类,用于匹配任意一个数字字符,即0-9之间任意数字
{m, n}匹配前一个字符至少m次,至多n次

根据以上语法可以写出电子邮箱ip地址和手机号的正则表达式:

  1. 电子邮箱验证
regex pattern("^[a-zA-Z0-9_]+@[a-zA-Z0-9_]+\\.com$")

^[a-zA-Z0-9_]+:匹配以字母、数字或下划线开始的字符串,至少一个字符。
@:匹配@符号
[a-zA-Z0-9_]+:匹配 @ 后面的部分,与前面相同。
\\.:匹配.,因为.在正则表达式中是特殊字符,所以需要转义。
com$:匹配.后面的com,并且确保这个是字符串的结尾。

  1. IP地址验证
regex pattern("^(\\d{1,2}|1\\d{2}|2[0-4]\\d|25[0-5])\\.
(\\d{1,2}|1\\d{2}|2[0-4]\\d|25[0-5])\\.
(\\d{1,2}|1\\d{2}|2[0-4]\\d|25[0-5])\\.
(\\d{1,2}|1\\d{2}|2[0-4]\\d|25[0-5])$");

一个多余的空格都不要有!!!

其中(\d{1,2}|1\d{2}|2[0-4]\d|25[0-5]):这个分组表达式用于匹配 0 到 255 之间的整数。
为什么会这么长呢,因为0-255有好几种情况,1位数,两位数和三位数,每一种情况都要覆盖到
\\d{1,2}是匹配1到2位的数字即,0~99。
1\\d{2},1开头,再加上随机两位数,匹配100~199
2[0-4]\\d,2开头,第二位数0-4之间随机取,最后第三位随机0-9
25[0-5],25开头,最后一位数在0-5之间随机
四种情况通过’|'或连接

  1. 电话号码验证
regex pattern("^\\+\\d+-\\d+-[\\d#]+$");

\\+ ,匹配一个+号,以+开头
\\d+,匹配至少一个随机数字
-,匹配 ‘-’ 符号
[\\d#]+,匹配数字或者#符号,至少一个

stoi作用:将字符串转换成整数,并且会自动忽略前导0

完整代码:

#include <iostream>
#include <regex>
#include <vector>
using namespace std;
bool isEmail(string str) {regex pattern("^([a-zA-Z0-9_]+@[a-zA-Z0-9_]+\\.com$)");return regex_match(str, pattern);
}
bool isIP(string str) {regex pattern("^(\\d{1,2}|1\\d{2}|2[0-4]\\d|25[0-5])\\.(\\d{1,2}|1\\d{2}|2[0-4]\\d|25[0-5])\\.(\\d{1,2}|1\\d{2}|2[0-4]\\d|25[0-5])\\.(\\d{1,2}|1\\d{2}|2[0-4]\\d|25[0-5])$");return regex_match(str, pattern);
}
bool isPhone(string str) {regex pattern("^\\+\\d+-\\d+-[\\d#]+$");return regex_match(str, pattern);
}
int main() {int n;cin >> n;vector<string> res;while (n--) {string input;cin >> input;if (isEmail(input)) res.push_back("email");else if (isIP(input)) res.push_back("ip");else if (isPhone(input)) res.push_back("phone");else res.push_back("invaild");}for (string r : res) {cout << r << endl;}return 0;
}

最大公约数是不是素数

小美对 gcd (最大公约数) 很感兴趣,她会询问你t次。
每次询问给出一个大于1的正整数n,你是否找到一个数字 m (2 ≤ m ≤ n),使得 gcd(n,m)为素数。

**输入:**每个测试文件均包含多组测试数据,第一行输入一个整数T,代表数据组数,每组测试数据描述如下:
在一行上输入一个整数n代表给定的数字
**输出:**对于每一组测试数据,在一行上输出一个整数,代表数字m。 如果有多种合法答案,您可以输出任意一种。

要找的m在2~n之间,所以,暴力穷举即可,每一个都试一下。
计算两个数的最大公约数:

int gcd(int a, int b){return b ? gcd(b, a % b) : a;

检查一个数是否为素数

bool isPrime(int num){//1不是素数,最小的素数是2if(num < 2) return false;for(int i = 2; i < num / i; i ++){if(num % i == 0) return false;return true;

完整代码:

#include<iostream>
#include<vector>
using namespace std;
int gcd(int a, int b) {return b ? gcd(b, a % b) : a;
}
bool isPrime(int num) {if (num < 2) return false;for (int i = 2; i < num / i; i++) {if (num % i == 0) return false;}return true;
}
int main() {int T;cin >> T;vector<int> res;while (T--) {int n;cin >> n;bool flag = false;for (int m = 2; m <= n; m++) {int gcdVal = gcd(n, m);if (isPrime(gcdVal)) {res.push_back(m);flag = true;break;//找到一个即可!}}if (!flag) res.push_back(-1);//没找到的话输入-1}for (int r : res) {cout << r << endl;}return 0;
}

数组的极差

小美有一个长度为 n 的数组,每次操作可以选择两个下标i和 j,将 ai 减去 1,将 aj 加上 1。小美想知道最少需要多少次操作,可以使数组极差最小。

数组的极差为数组中最大值和最小值的差。

输入:第一行输入一个整数n(2 ≤ n ≤ 10^5),代表数组长度;第二行输入几个整数a1,a2…(1 ≤ ai ≤ 10^9) 代表数组元素
输出:输入几个整数a1,a2…代表数组的元素

应考虑将所有元素调整到一个共同的目标值上,这个目标值最接近整个数组的平均值。由于每次操作是将一个元素减去 1,另一个元素加上 1,这意味着数组的总和在操作前后保持不变。因此,最佳策略是尝试使所有元素达到数组总和除以数组长度的结果(向下取整的结果),即平均值。

#include<iostream>
#include<vector>
using namespace std;
int main() {int n;cin >> n;vector<long long> a(n);long long sum = 0;for (int i = 0; i < n; i++) {cin >> a[i];sum += a[i];}long long avg = sum / n;long long minMoves = 0;long long need = 0;for (int i = 0; i < n; i++) {need += a[i] - avg;minMoves = max(minMoves, abs(need));//更新最大操作次数}cout << minMoves << endl;return 0;
}

这篇关于美团2024秋招第二场笔试[测开方向]0817详细解析C++代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112512

相关文章

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

Win11安装PostgreSQL数据库的两种方式详细步骤

《Win11安装PostgreSQL数据库的两种方式详细步骤》PostgreSQL是备受业界青睐的关系型数据库,尤其是在地理空间和移动领域,:本文主要介绍Win11安装PostgreSQL数据库的... 目录一、exe文件安装 (推荐)下载安装包1. 选择操作系统2. 跳转到EDB(PostgreSQL 的