【EfficientDet】论文解读

2024-08-27 18:08
文章标签 解读 论文 efficientdet

本文主要是介绍【EfficientDet】论文解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文链接:

https://arxiv.org/abs/1911.09070

可用代码链接:(下面这个代码有可能会缺东西,记得从他给的readme的其他工程中寻找)

keras:https://github.com/xuannianz/EfficientDet

EfficientDet: Scalable and Efficient Object Detection

Google Brain 团队的三位 Auto ML 大佬 Mingxing Tan, Ruoming Pang, Quoc V. Le 在 CVPR 2020 发表一篇文章 EfficientDet: Scalable and Efficient Object Detection,代码已经开源到了 Github。

这篇工作可以看做是中了 ICML 2019 Oral 的 EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 扩展,从分类任务扩展到检测任务(Object Detection)。

众所周知,神经网络的速度和精度之间存在权衡,而 EfficientDet 是一个总称,可以分为 EfficientDet D1 ~ EfficientDet D7,速度逐渐变慢,但是精度也逐渐提高。

从下图中可以看出,EfficientDet-D7 的性能非常的惊人:在 326B FLOPS,参数量 52 M的情况下,COCO 2017 validation 数据集上取得了 51.0 的 mAP,state-of-the-art 的结果。和 AmoebaNet + NAS-FPN 相比,FLOPS 仅为其十分之一的情况下取得了更好的结果。

这篇文章的主要贡献点是 BiFPN,Compound Scaling 两部分,会在下面一一介绍。

BiFPN

CVPR 2017 的 FPN 指出了不同层之间特征融合的重要性,并且以一种比较简单,Heuristic 的方法把底层的特征乘两倍和浅层相加来融合。之后人们也试了各种别的融合方法,比如 PANet 先从底向上连,再自顶向下连回去;M2Det 在连的时候加入 skip-connection; Libra-RCNN 先把所有feature 都汇聚到中间层,然后再 refine。

总之上述都是一些人工连连看的设计,包含 Conv,Sum,Concatenate,Resize,Skip Connection 等候选操作。很明显使用哪些操作、操作之间的顺序是可以用 NAS 搜的。进入 Auto ML 时代之后,NAS-FPN 珠玉在前,搜到了一个更好的 neck 部分的结构。

本文的作者基于下面的观察结果/假设,进一步进行了优化:

  1. 作者观察到 PANet 的效果比 FPN ,NAS-FPN 要好,就是计算量更大;
  2. 作者从 PANet 出发,移除掉了只有一个输入的节点。这样做是假设只有一个输入的节点相对不太重要。这样把 PANet 简化,得到了上图 (e) Simplified PANet 的结果;
  3. 作者在相同 level 的输入和输出节点之间连了一条边,假设是能融合更多特征,有点 skip-connection 的意味,得到了上图 (f) 的结果;
  4. PANet 只有从底向上连,自顶向下两条路径,作者认为这种连法可以作为一个基础层,重复多次。这样就得到了下图的结果(看中间的 BiFPN Layer 部分)。如何确定重复几次呢,这是一个速度和精度之间的权衡,会在下面的Compound Scaling 部分介绍。

BiFPN 相对 FPN 能涨 4 个点,而且参数量反而是下降的,如下表所示。

Cross-Scale Connections

此外,作者还提出,之前从FPN 开始普遍采用的,一个特征先 Resize ,再和另一层的特征相加的方式不合理。因为这样假设这两层的特征有了相同的权重。从更复杂的建模角度出发,应该每一个 feature 在相加的时候都要乘一个自己的权重。这样 weighted 的方式能涨 0.4,如下表所示:

weigjted 的时候,权重理论上要用 softmax 归一化到和为1,但由于 softmax 的指数运算开销比较大,作者简化为一个快速的方式 (Fast normalized fusion),其实就是去掉了 softmax 的指数运算,在 GPU 上能快 30%,性能微微掉一点,如下表所示:

总结一下 BiFPN 部分,是在 PANet 的基础上,根据一些主观的假设,做了针对性的化简,得到了参数量更少,效果更好的连接方式。

Compound Scaling

下面介绍的 Compound Scaling 部分,可以说是 Mingxing Tan 大佬的拿手好戏。 Model Scaling 指的是人们经常根据资源的限制,对模型进行调整。比如说为了把 backbone 部分 scale up,得到更大的模型,就会考虑把层数加深, Res50 -> Res101这种,或者说比如把输入图的分辨率拉大。

EfficientNet 在 Model Scaling 的时候考虑了网络的 width, depth, and resolution 三要素。而 EfficientDet 进一步扩展,把 EfficientNet 拿来做 backbone,这样从 EfficientNet B0 ~ B6,就可以控制 Backbone 的规模;neck 部分,BiFPN 的 channel 数量、重复的 layer 数量也可以控制;此外还有 head 部分的层数,以及 输入图片的分辨率,这些组成了 EfficientDet 的 scaling config 。

从 EfficientDet D0 到 D7 的 “丹方” 如下表所示:

按照这个 “丹方” 可以复现这篇工作,但是这个“丹方”怎么来的作者没有详细说。 这里面有非常非常多的超参数,比如 BiFPN 的 channel 数量的增长的公式为

 

从 EfficientDet D0 到 D7 在 COCO 上的 mAP 结果如下表所示,可以说是吊打其他方法的存在:

结论

这篇 paper 的介绍就告一段落了,个人感觉这篇 paper 虽然性能很好,但是设计的时候基于经验法则、难以解释的参数有很多。

自己修改过一个简化版本的

检测的总流程

MBConv

SEBlock

参考博客:

https://baijiahao.baidu.com/s?id=1651514751262272881&wfr=spider&for=pc

https://zhuanlan.zhihu.com/p/93241232

https://zhuanlan.zhihu.com/p/94163443

这篇关于【EfficientDet】论文解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112396

相关文章

解读静态资源访问static-locations和static-path-pattern

《解读静态资源访问static-locations和static-path-pattern》本文主要介绍了SpringBoot中静态资源的配置和访问方式,包括静态资源的默认前缀、默认地址、目录结构、访... 目录静态资源访问static-locations和static-path-pattern静态资源配置

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快