【EfficientDet】论文解读

2024-08-27 18:08
文章标签 解读 论文 efficientdet

本文主要是介绍【EfficientDet】论文解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文链接:

https://arxiv.org/abs/1911.09070

可用代码链接:(下面这个代码有可能会缺东西,记得从他给的readme的其他工程中寻找)

keras:https://github.com/xuannianz/EfficientDet

EfficientDet: Scalable and Efficient Object Detection

Google Brain 团队的三位 Auto ML 大佬 Mingxing Tan, Ruoming Pang, Quoc V. Le 在 CVPR 2020 发表一篇文章 EfficientDet: Scalable and Efficient Object Detection,代码已经开源到了 Github。

这篇工作可以看做是中了 ICML 2019 Oral 的 EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 扩展,从分类任务扩展到检测任务(Object Detection)。

众所周知,神经网络的速度和精度之间存在权衡,而 EfficientDet 是一个总称,可以分为 EfficientDet D1 ~ EfficientDet D7,速度逐渐变慢,但是精度也逐渐提高。

从下图中可以看出,EfficientDet-D7 的性能非常的惊人:在 326B FLOPS,参数量 52 M的情况下,COCO 2017 validation 数据集上取得了 51.0 的 mAP,state-of-the-art 的结果。和 AmoebaNet + NAS-FPN 相比,FLOPS 仅为其十分之一的情况下取得了更好的结果。

这篇文章的主要贡献点是 BiFPN,Compound Scaling 两部分,会在下面一一介绍。

BiFPN

CVPR 2017 的 FPN 指出了不同层之间特征融合的重要性,并且以一种比较简单,Heuristic 的方法把底层的特征乘两倍和浅层相加来融合。之后人们也试了各种别的融合方法,比如 PANet 先从底向上连,再自顶向下连回去;M2Det 在连的时候加入 skip-connection; Libra-RCNN 先把所有feature 都汇聚到中间层,然后再 refine。

总之上述都是一些人工连连看的设计,包含 Conv,Sum,Concatenate,Resize,Skip Connection 等候选操作。很明显使用哪些操作、操作之间的顺序是可以用 NAS 搜的。进入 Auto ML 时代之后,NAS-FPN 珠玉在前,搜到了一个更好的 neck 部分的结构。

本文的作者基于下面的观察结果/假设,进一步进行了优化:

  1. 作者观察到 PANet 的效果比 FPN ,NAS-FPN 要好,就是计算量更大;
  2. 作者从 PANet 出发,移除掉了只有一个输入的节点。这样做是假设只有一个输入的节点相对不太重要。这样把 PANet 简化,得到了上图 (e) Simplified PANet 的结果;
  3. 作者在相同 level 的输入和输出节点之间连了一条边,假设是能融合更多特征,有点 skip-connection 的意味,得到了上图 (f) 的结果;
  4. PANet 只有从底向上连,自顶向下两条路径,作者认为这种连法可以作为一个基础层,重复多次。这样就得到了下图的结果(看中间的 BiFPN Layer 部分)。如何确定重复几次呢,这是一个速度和精度之间的权衡,会在下面的Compound Scaling 部分介绍。

BiFPN 相对 FPN 能涨 4 个点,而且参数量反而是下降的,如下表所示。

Cross-Scale Connections

此外,作者还提出,之前从FPN 开始普遍采用的,一个特征先 Resize ,再和另一层的特征相加的方式不合理。因为这样假设这两层的特征有了相同的权重。从更复杂的建模角度出发,应该每一个 feature 在相加的时候都要乘一个自己的权重。这样 weighted 的方式能涨 0.4,如下表所示:

weigjted 的时候,权重理论上要用 softmax 归一化到和为1,但由于 softmax 的指数运算开销比较大,作者简化为一个快速的方式 (Fast normalized fusion),其实就是去掉了 softmax 的指数运算,在 GPU 上能快 30%,性能微微掉一点,如下表所示:

总结一下 BiFPN 部分,是在 PANet 的基础上,根据一些主观的假设,做了针对性的化简,得到了参数量更少,效果更好的连接方式。

Compound Scaling

下面介绍的 Compound Scaling 部分,可以说是 Mingxing Tan 大佬的拿手好戏。 Model Scaling 指的是人们经常根据资源的限制,对模型进行调整。比如说为了把 backbone 部分 scale up,得到更大的模型,就会考虑把层数加深, Res50 -> Res101这种,或者说比如把输入图的分辨率拉大。

EfficientNet 在 Model Scaling 的时候考虑了网络的 width, depth, and resolution 三要素。而 EfficientDet 进一步扩展,把 EfficientNet 拿来做 backbone,这样从 EfficientNet B0 ~ B6,就可以控制 Backbone 的规模;neck 部分,BiFPN 的 channel 数量、重复的 layer 数量也可以控制;此外还有 head 部分的层数,以及 输入图片的分辨率,这些组成了 EfficientDet 的 scaling config 。

从 EfficientDet D0 到 D7 的 “丹方” 如下表所示:

按照这个 “丹方” 可以复现这篇工作,但是这个“丹方”怎么来的作者没有详细说。 这里面有非常非常多的超参数,比如 BiFPN 的 channel 数量的增长的公式为

 

从 EfficientDet D0 到 D7 在 COCO 上的 mAP 结果如下表所示,可以说是吊打其他方法的存在:

结论

这篇 paper 的介绍就告一段落了,个人感觉这篇 paper 虽然性能很好,但是设计的时候基于经验法则、难以解释的参数有很多。

自己修改过一个简化版本的

检测的总流程

MBConv

SEBlock

参考博客:

https://baijiahao.baidu.com/s?id=1651514751262272881&wfr=spider&for=pc

https://zhuanlan.zhihu.com/p/93241232

https://zhuanlan.zhihu.com/p/94163443

这篇关于【EfficientDet】论文解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112396

相关文章

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin