【操作系统】实验:进程死锁

2024-08-27 14:44

本文主要是介绍【操作系统】实验:进程死锁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、实验目的

二、实验要求

三、实验步骤

四、核心代码

五、记录与处理

六、思考

七、完整报告和成果文件提取链接


一、实验目的

1掌握死锁的基本概念;

2理解死锁的必要条件;

3理解避免死锁的方法、安全状态等重要概念;

4了解银行家算法——避免死锁的一种重要方法,理解算法思想及

具体实现。

二、实验要求

1.模拟实现银行家算法

2.本实验要求学生编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用银行家算法,有效地防止和避免死锁的发生。

3.用银行家算法实现资源分配。

4.进程可动态地申请资源和释放资源,系统按各进程的申请动态地分配资源。

5.要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源号以及为某进程分配资源后的有关资源数据。

三、实验步骤

1.初始状态安全性检查

2.各进程请求资源,银行家算法完成分配

流程图举例:

四、核心代码

void show() {//展示当前的各个矩阵的情况 cout<<"系统当前剩余可用资源如下:"<<endl;for(int i=0; i<m; i++) {cout<<Available[i]<<" ";}cout<<endl;cout<<"系统当前资源分配如下:"<<endl;cout<<"进程名\t"<<"Max\t"<<"Allocation\t"<<"Need"<<endl;for(int i=0; i<n; i++) {cout<<"P"<<i<<'\t';for(int j=0; j<m; j++)cout<<Max[i][j]<<" ";cout<<'\t'<<"  ";for(int j=0; j<m; j++)cout<<Allocation[i][j]<<" ";cout<<'\t'<<" ";for(int j=0; j<m; j++)cout<<Need[i][j]<<" ";cout<<endl;}
}
void safe() {//判断初始资源是否安全 int cnt=0;for(int i=0; i<m; i++)work[i]=Available[i];//将初始的资源数赋值给workfor(int i=0; i<n; i++) {//判断是否存在安全序列int flag=1;if(over[i])continue;else {//判断当前可用资源数是否大于Need矩阵for(int j=0; j<m; j++) {if(Need[i][j]>work[j]) {flag=0;break;}}}if(flag==1) {//满足条件就更新work数组;并且重头开始遍历over[i]=true;for(int j=0; j<m; j++) {work[j]=work[j]+Allocation[i][j];}list[cnt++]=i;i=-1;}}int demo=1;for(int i=0; i<n; i++) {if(!over[i]) {cout<<"该序列不安全,应该禁止分配!"<<endl;demo=0;exit(0);}}if(demo==1) {cout<<"该状态安全,其中一个安全序列为:";for(int i=0; i<n; i++) {cout<<"P"<<list[i]<<" ";}cout<<endl;}
}void process() {//判断某个进程是否可以请求资源分配 cout<<"请输入你想分配资源的进程号(0-n-1):"<<endl;int id;cin>>id;int Request[M];cout<<"请输入你想为该进程分配的资源数:"<<endl;memset(work,0,sizeof work);for(int i=0; i<m; i++)cin>>Request[i];int flag=1,flag2=1;for(int i=0; i<m; i++) {if(Request[i]>Need[id][i]) {flag=0;break;}}if(flag==0) {cout<<"请求资源数大于需求资源数,拒绝分配!"<<endl;continues();}for(int i=0; i<m; i++) {if(Request[i]>Available[i]) {flag2=0;break;}}if(flag2==0) {cout<<"请求的资源数大于剩余可用资源数,拒绝分配!"<<endl;continues();}if(flag==1&&flag2==1) { //满足基本请求条件for(int i=0; i<m; i++) {work[i]=Available[i];work[i]-=Request[i];Need[id][i]-=Request[i];Allocation[id][i]+=Request[i];Available[i]-=Request[i];}memset(over,false,sizeof over);//初始化序列为未判断memset(list,0,sizeof list);//清空安全序列数组int cnt=0;for(int i=0; i<n; i++) {//判断是否存在安全序列int flag=1;if(over[i])continue;else {//判断当前可用资源数是否大于Need矩阵for(int j=0; j<m; j++) {if(Need[i][j]>work[j]) {flag=0;break;}}}if(flag==1) {//满足条件就更新work数组;并且重头开始遍历over[i]=true;for(int j=0; j<m; j++) {work[j]=work[j]+Allocation[i][j];}list[cnt++]=i;i=-1;}}int demo=1;for(int i=0; i<n; i++) {if(!over[i]) {show();cout<<"该序列不安全,应该禁止分配!"<<endl;demo=0;break;}}if(demo==0) {for(int i=0; i<m; i++) {Need[id][i]+=Request[i];Allocation[id][i]-=Request[i];Available[i]+=Request[i];}show();continues();}if(demo==1) {show();cout<<"该状态安全,其中一个安全序列为:"<<endl;for(int i=0; i<n; i++) {cout<<"P"<<list[i]<<" ";}cout<<endl;continues();}}
}

五、记录与处理

输入的进程数和资源数如图所示:

选择进行进程请求分配并且输入分配资源的进程号和资源数:

显示当前序列不安全:

六、思考

死锁避免和死锁预防的区别和联系是什么?

1.区别:

处理方式:死锁预防是计算机操作系统在设计时确定资源分配算法,通过破坏产生死锁的必要条件来严格防止死锁的出现。这通常涉及到在资源分配之前对系统状态进行静态分析,并预先采取措施来避免死锁。而死锁避免则更侧重于在系统运行过程中动态地避免死锁的发生。它通过对进程发出的每一个系统能够满足的资源申请进行动态检查,根据检查结果决定是否分配资源,以预防死锁的发生。

系统性能影响:虽然死锁预防能够严格地防止死锁的出现,但它可能严重地影响系统性能,因为可能需要限制资源的并发访问,以降低死锁的风险。而死锁避免则相对灵活,它可以在满足系统性能要求的同时,动态地调整资源的分配,以减少死锁的可能性。

2.联系:

死锁避免和死锁预防都是为了解决计算机系统中的死锁问题,以提高系统的稳定性和效率。它们都关注资源的分配和使用,试图通过合理的策略来避免死锁的发生。此外,虽然它们在处理死锁问题的方式和侧重点上有所不同,但在某些情况下,也可以结合使用,以提供更全面和有效的死锁解决方案。

综上所述,死锁避免和死锁预防在处理死锁问题时有着不同的策略和方法,但它们都是为了提高计算机系统的稳定性和效率,解决可能出现的死锁问题。

七、完整报告和成果文件提取链接

链接:https://pan.baidu.com/s/1UbP6729pCluscVW0_9oI8w?pwd=1xki 
提取码:1xki 

这篇关于【操作系统】实验:进程死锁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111966

相关文章

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

C#如何优雅地取消进程的执行之Cancellation详解

《C#如何优雅地取消进程的执行之Cancellation详解》本文介绍了.NET框架中的取消协作模型,包括CancellationToken的使用、取消请求的发送和接收、以及如何处理取消事件... 目录概述与取消线程相关的类型代码举例操作取消vs对象取消监听并响应取消请求轮询监听通过回调注册进行监听使用Wa

[Linux]:进程(下)

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:Linux学习 贝蒂的主页:Betty’s blog 1. 进程终止 1.1 进程退出的场景 进程退出只有以下三种情况: 代码运行完毕,结果正确。代码运行完毕,结果不正确。代码异常终止(进程崩溃)。 1.2 进程退出码 在编程中,我们通常认为main函数是代码的入口,但实际上它只是用户级

Linux操作系统 初识

在认识操作系统之前,我们首先来了解一下计算机的发展: 计算机的发展 世界上第一台计算机名叫埃尼阿克,诞生在1945年2月14日,用于军事用途。 后来因为计算机的优势和潜力巨大,计算机开始飞速发展,并产生了一个当时一直有效的定律:摩尔定律--当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。 那么相应的,计算机就会变得越来越快,越来越小型化。

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

java 进程 返回值

实现 Callable 接口 与 Runnable 相比,Callable 可以有返回值,返回值通过 FutureTask 进行封装。 public class MyCallable implements Callable<Integer> {public Integer call() {return 123;}} public static void main(String[] args

C#关闭指定时间段的Excel进程的方法

private DateTime beforeTime;            //Excel启动之前时间          private DateTime afterTime;               //Excel启动之后时间          //举例          beforeTime = DateTime.Now;          Excel.Applicat