Python酷库之旅-第三方库Pandas(102)

2024-08-27 09:36

本文主要是介绍Python酷库之旅-第三方库Pandas(102),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、用法精讲

441、pandas.DataFrame.mask方法

441-1、语法

441-2、参数

441-3、功能

441-4、返回值

441-5、说明

441-6、用法

441-6-1、数据准备

441-6-2、代码示例

441-6-3、结果输出

442、pandas.DataFrame.query方法

442-1、语法

442-2、参数

442-3、功能

442-4、返回值

442-5、说明

442-6、用法

442-6-1、数据准备

442-6-2、代码示例

442-6-3、结果输出

443、pandas.DataFrame.__add__魔法方法

443-1、语法

443-2、参数

443-3、功能

443-4、返回值

443-5、说明

443-6、用法

443-6-1、数据准备

443-6-2、代码示例

443-6-3、结果输出

444、pandas.DataFrame.add方法

444-1、语法

444-2、参数

444-3、功能

444-4、返回值

444-5、说明

444-6、用法

444-6-1、数据准备

444-6-2、代码示例

444-6-3、结果输出

445、pandas.DataFrame.sub方法

445-1、语法

445-2、参数

445-3、功能

445-4、返回值

445-5、说明

445-6、用法

445-6-1、数据准备

445-6-2、代码示例

445-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

441、pandas.DataFrame.mask方法
441-1、语法
# 441、pandas.DataFrame.mask方法
pandas.DataFrame.mask(cond, other=_NoDefault.no_default, *, inplace=False, axis=None, level=None)
Replace values where the condition is True.Parameters:
cond
bool Series/DataFrame, array-like, or callable
Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).other
scalar, Series/DataFrame, or callable
Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).inplace
bool, default False
Whether to perform the operation in place on the data.axis
int, default None
Alignment axis if needed. For Series this parameter is unused and defaults to 0.level
int, default None
Alignment level if needed.Returns:
Same type as caller or None if
inplace=True.
441-2、参数

441-2-1、cond(必须)一个条件,可以是布尔DataFrame、Series或数组,当满足此条件时,将替换值。

441-2-2、other(可选)替换的值,可以是标量、DataFrame、Series或数组,默认为_NoDefault.no_default,实际使用时通常会指定某个值。

441-2-3、inplace(可选,默认值为False)布尔值,是否直接修改原DataFrame。

441-2-4、axis(可选,默认值为None)参数用于选择沿哪个轴应用条件,0或'index'表示沿行,1或'columns'表示沿列。

441-2-5、level(可选,默认值为None)多级索引的级别,仅在某些情况下适用。

441-3、功能

        用于根据给定条件替换值的方法,它与DataFrame.where功能相反:where在满足条件时保持原值,而mask在满足条件时会用其他值替换原值。

441-4、返回值

        返回一个新的DataFrame,除非inplace=True,此时将直接修改原DataFrame。

441-5、说明

        无

441-6、用法
441-6-1、数据准备
441-6-2、代码示例
# 441、pandas.DataFrame.mask方法
# 441-1、用标量替换值
import pandas as pd
# 创建一个DataFrame实例
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [10, 20, 30, 40]
})
# 使用mask方法,将大于2的值替换为 0
masked_df = df.mask(df > 2, other=0)
print(masked_df, end='\n\n')# 441-2、用另一个DataFrame替换值
import pandas as pd
# 创建一个DataFrame实例
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [10, 20, 30, 40]
})
# 创建另一个DataFrame
replacement_df = pd.DataFrame({'A': [100, 200, 300, 400],'B': [1000, 2000, 3000, 4000]
})
# 使用mask方法,将大于2的值替换为replacement_df中的对应值
masked_df = df.mask(df > 2, other=replacement_df)
print(masked_df, end='\n\n')# 441-3、原地修改DataFrame
import pandas as pd
# 创建一个DataFrame实例
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [10, 20, 30, 40]
})
# 原地修改DataFrame,将大于2的值替换为-1
df.mask(df > 2, other=-1, inplace=True)
print(df)
441-6-3、结果输出
# 441、pandas.DataFrame.mask方法
# 441-1、用标量替换值
#    A  B
# 0  1  0
# 1  2  0
# 2  0  0
# 3  0  0# 441-2、用另一个DataFrame替换值
#      A     B
# 0    1  1000
# 1    2  2000
# 2  300  3000
# 3  400  4000# 441-3、原地修改DataFrame
#    A  B
# 0  1 -1
# 1  2 -1
# 2 -1 -1
# 3 -1 -1
442、pandas.DataFrame.query方法
442-1、语法
# 442、pandas.DataFrame.query方法
pandas.DataFrame.query(expr, *, inplace=False, **kwargs)
Query the columns of a DataFrame with a boolean expression.Parameters:
exprstr
The query string to evaluate.You can refer to variables in the environment by prefixing them with an ‘@’ character like @a + b.You can refer to column names that are not valid Python variable names by surrounding them in backticks. Thus, column names containing spaces or punctuations (besides underscores) or starting with digits must be surrounded by backticks. (For example, a column named “Area (cm^2)” would be referenced as `Area (cm^2)`). Column names which are Python keywords (like “list”, “for”, “import”, etc) cannot be used.For example, if one of your columns is called a a and you want to sum it with b, your query should be `a a` + b.inplacebool
Whether to modify the DataFrame rather than creating a new one.**kwargs
See the documentation for eval() for complete details on the keyword arguments accepted by DataFrame.query().Returns:
DataFrame or None
DataFrame resulting from the provided query expression or None if inplace=True.
442-2、参数

442-2-1、expr(必须)一个字符串,表示查询的表达式,表达式中的变量名应与DataFrame中的列名一致,可以使用任何有效的Python表达式语法。

442-2-2、inplace(可选,默认值为False)布尔值,如果为True,则在原地修改DataFrame,否则返回一个新的DataFrame。

442-2-3、**kwargs(可选)其他关键字参数,包括影响表达式执行环境的参数:

  • level:整数或级别名称,默认为None,查询沿着指定的级别进行计算(仅适用于多等级索引)。
  • global_dict:映射,将被用作全局命名空间中的变量。
  • local_dict:映射,将被用作局部命名空间中的变量。
442-3、功能

        通过查询表达式来过滤数据,从DataFrame中筛选出符合条件的行,它提供了一种更直观的方法,特别是对于较复杂的条件筛选,与标准的布尔索引方式相比,它显得更加简洁和可读。

442-4、返回值

        返回一个新的DataFrame,其中包含所有符合查询表达式条件的行,如果inplace=True,则直接修改原DataFrame并返回None。

442-5、说明

        无

442-6、用法
442-6-1、数据准备
442-6-2、代码示例
# 442、pandas.DataFrame.query方法
# 442-1、基本使用
import pandas as pd
# 创建一个DataFrame实例
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [10, 20, 30, 40],'C': ['foo', 'bar', 'foo', 'bar']
})
# 使用query方法筛选出'A'大于2的行
filtered_df = df.query('A > 2')
print(filtered_df, end='\n\n')# 442-2、结合多个条件
import pandas as pd
# 创建一个DataFrame实例
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [10, 20, 30, 40],'C': ['foo', 'bar', 'foo', 'bar']
})
# 使用query方法筛选出'A'大于2且'C'等于'foo'的行
filtered_df = df.query('A > 2 and C == "foo"')
print(filtered_df, end='\n\n')# 442-3、使用inplace=True
import pandas as pd
# 创建一个DataFrame实例
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [10, 20, 30, 40],'C': ['foo', 'bar', 'foo', 'bar']
})
# 使用query方法原地筛选出'A'大于2的行
df.query('A > 2', inplace=True)
print(df, end='\n\n')# 442-4、使用局部和全局命名空间中的变量
import pandas as pd
# 创建一个DataFrame实例
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [10, 20, 30, 40]
})
# 定义一些全局变量
low = 2
high = 30
# 使用query方法,引用全局变量进行筛选
filtered_df = df.query('A > @low and B < @high')
print(filtered_df)
442-6-3、结果输出
# 442、pandas.DataFrame.query方法
# 442-1、基本使用
#    A   B    C
# 2  3  30  foo
# 3  4  40  bar# 442-2、结合多个条件
#    A   B    C
# 2  3  30  foo# 442-3、使用inplace=True
#    A   B    C
# 2  3  30  foo
# 3  4  40  bar# 442-4、使用局部和全局命名空间中的变量
# Empty DataFrame
# Columns: [A, B]
# Index: []
443、pandas.DataFrame.__add__魔法方法
443-1、语法
# 443、pandas.DataFrame.__add__魔法方法
pandas.DataFrame.__add__(other)
Get Addition of DataFrame and other, column-wise.Equivalent to DataFrame.add(other).Parameters:
other
scalar, sequence, Series, dict or DataFrame
Object to be added to the DataFrame.Returns:
DataFrame
The result of adding other to DataFrame.
443-2、参数

443-2-1、other(必须)要与当前DataFrame相加的对象,可以是以下几种类型:

  • DataFrame:如果传入另一个DataFrame,则进行元素对元素的加法操作。
  • Series:如果传入Series,pandas会尝试将其广播到每一行或每一列,然后执行加法。
  • 标量值:如果传入一个标量值,则将该值加到DataFrame的每个元素上。
443-3、功能

        执行元素级的加法运算,对于两个DataFrame,它会对齐索引和列,然后逐元素相加,如果在某些位置上有缺失数据(NaN),结果将在这些位置保留NaN。

443-4、返回值

        返回一个新的DataFrame,其每个元素是当前DataFrame与other中对应元素相加的结果。

443-5、说明

        无

443-6、用法
443-6-1、数据准备
443-6-2、代码示例
# 443、pandas.DataFrame.__add__魔法方法
# 443-1、两个DataFrame相加
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
df2 = pd.DataFrame({'A': [10, 20, 30],'B': [40, 50, 60]
})
result = df1 + df2
print(result, end='\n\n')# 443-2、DataFrame与Series相加
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
s = pd.Series([10, 20], index=['A', 'B'])
result = df + s
print(result, end='\n\n')# 443-3、DataFrame与标量值相加
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
result = df + 10
print(result)
443-6-3、结果输出
# 443、pandas.DataFrame.__add__魔法方法
# 443-1、两个DataFrame相加
#     A   B
# 0  11  44
# 1  22  55
# 2  33  66# 443-2、DataFrame与Series相加
#     A   B
# 0  11  24
# 1  12  25
# 2  13  26# 443-3、DataFrame与标量值相加
#     A   B
# 0  11  14
# 1  12  15
# 2  13  16
444、pandas.DataFrame.add方法
444-1、语法
# 444、pandas.DataFrame.add方法
pandas.DataFrame.add(other, axis='columns', level=None, fill_value=None)
Get Addition of dataframe and other, element-wise (binary operator add).Equivalent to dataframe + other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, radd.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.Parameters:
other
scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
float or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.Returns:
DataFrame
Result of the arithmetic operation.
444-2、参数

444-2-1、other(必须)要与当前DataFrame相加的对象,可以是DataFrame、Series或标量值。

444-2-2、axis(可选,默认值为'columns'){0 or ‘index’, 1 or ‘columns’}, 如果other是一个Series,则该参数指示沿哪个轴对齐。

  • 0或'index':沿行对齐
  • 1或'columns':沿列对齐

444-2-3、level(可选,默认值为None)如果具有多层索引(MultiIndex),则此参数用来指定在哪一层上对齐;默认情况下,不使用多层索引。

444-2-4、fill_value(可选,默认值为None)在执行加法操作时,用于替代缺失数据(NaN)的值,如果一方的元素是NaN,则使用fill_value替代。

444-3、功能

        用于执行元素级的加法操作,同时提供了灵活的参数来处理不同类型的数据对齐和缺失数据填充。

444-4、返回值

        返回一个新的DataFrame,其每个元素是当前DataFrame与other中对应元素相加的结果,应用了指定的对齐和填充规则。

444-5、说明

        无

444-6、用法
444-6-1、数据准备
444-6-2、代码示例
# 444、pandas.DataFrame.add方法
# 444-1、两个DataFrame相加
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
df2 = pd.DataFrame({'A': [10, 20, 30],'B': [40, 50, 60]
})
result = df1.add(df2)
print(result, end='\n\n')# 444-2、DataFrame与Series相加(沿列对齐)
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
s = pd.Series([10, 20], index=['A', 'B'])
result = df.add(s, axis='columns')
print(result, end='\n\n')# 444-3、DataFrame与标量值相加
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
result = df.add(10)
print(result, end='\n\n')# 444-4、使用fill_value
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, None],'B': [4, None, 6]
})
df2 = pd.DataFrame({'A': [10, 20, 30],'B': [40, 50, 60]
})
result = df1.add(df2, fill_value=0)
print(result)
444-6-3、结果输出
# 444、pandas.DataFrame.add方法
# 444-1、两个DataFrame相加
#     A   B
# 0  11  44
# 1  22  55
# 2  33  66# 444-2、DataFrame与Series相加(沿列对齐)
#     A   B
# 0  11  24
# 1  12  25
# 2  13  26# 444-3、DataFrame与标量值相加
#     A   B
# 0  11  14
# 1  12  15
# 2  13  16# 444-4、使用fill_value
#       A     B
# 0  11.0  44.0
# 1  22.0  50.0
# 2  30.0  66.0
445、pandas.DataFrame.sub方法
445-1、语法
# 445、pandas.DataFrame.sub方法
pandas.DataFrame.sub(other, axis='columns', level=None, fill_value=None)
Get Subtraction of dataframe and other, element-wise (binary operator sub).Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rsub.Among flexible wrappers (add, sub, mul, div, floordiv, mod, pow) to arithmetic operators: +, -, *, /, //, %, **.Parameters:
other
scalar, sequence, Series, dict or DataFrame
Any single or multiple element data structure, or list-like object.axis
{0 or ‘index’, 1 or ‘columns’}
Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on.level
int or label
Broadcast across a level, matching Index values on the passed MultiIndex level.fill_value
float or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.Returns:
DataFrame
Result of the arithmetic operation.
445-2、参数

445-2-1、other(必须)要与当前DataFrame相减的对象,可以是DataFrame、Series或标量值。

445-2-2、axis(可选,默认值为'columns'){0 or ‘index’, 1 or ‘columns’}, 如果other是一个Series,则该参数指示沿哪个轴对齐。

  • 0或'index':沿行对齐
  • 1或'columns':沿列对齐

445-2-3、level(可选,默认值为None)如果具有多层索引(MultiIndex),则此参数用来指定在哪一层上对齐;默认情况下,不使用多层索引。

445-2-4、fill_value(可选,默认值为None)在执行减法操作时,用于替代缺失数据(NaN)的值,如果一方的元素是NaN,则使用fill_value替代。

445-3、功能

        用于执行元素级的减法操作,同时提供了灵活的参数来处理不同类型的数据对齐和缺失数据填充。

445-4、返回值

        返回一个新的DataFrame,其每个元素是当前DataFrame与other中对应元素相减的结果,应用了指定的对齐和填充规则。

445-5、说明

        无

445-6、用法
445-6-1、数据准备
445-6-2、代码示例
# 445、pandas.DataFrame.sub方法
# 445-1、两个DataFrame相减
import pandas as pd
df1 = pd.DataFrame({'A': [10, 20, 30],'B': [40, 50, 60]
})
df2 = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
result = df1.sub(df2)
print(result, end='\n\n')# 445-2、DataFrame与Series相减(沿列对齐)
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
s = pd.Series([1, 2], index=['A', 'B'])
result = df.sub(s, axis='columns')
print(result, end='\n\n')# 445-3、DataFrame与标量值相减
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
result = df.sub(1)
print(result, end='\n\n')# 445-4、使用fill_value
import pandas as pd
df1 = pd.DataFrame({'A': [1, 2, None],'B': [4, None, 6]
})
df2 = pd.DataFrame({'A': [10, 20, 30],'B': [40, 50, 60]
})
result = df1.sub(df2, fill_value=0)
print(result)
445-6-3、结果输出
# 445、pandas.DataFrame.sub方法
# 445-1、两个DataFrame相减
#     A   B
# 0   9  36
# 1  18  45
# 2  27  54# 445-2、DataFrame与Series相减(沿列对齐)
#    A  B
# 0  0  2
# 1  1  3
# 2  2  4# 445-3、DataFrame与标量值相减
#    A  B
# 0  0  3
# 1  1  4
# 2  2  5# 445-4、使用fill_value
#       A     B
# 0  -9.0 -36.0
# 1 -18.0 -50.0
# 2 -30.0 -54.0

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

这篇关于Python酷库之旅-第三方库Pandas(102)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111290

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

如何更优雅地对接第三方API

如何更优雅地对接第三方API 本文所有示例完整代码地址:https://github.com/yu-linfeng/BlogRepositories/tree/master/repositories/third 我们在日常开发过程中,有不少场景会对接第三方的API,例如第三方账号登录,第三方服务等等。第三方服务会提供API或者SDK,我依稀记得早些年Maven还没那么广泛使用,通常要对接第三方

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点