python实现人工神经网络

2024-08-27 04:36

本文主要是介绍python实现人工神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要编写一个简单的人工神经网络(ANN)程序,可以从一个基本的前馈神经网络开始,该网络通常包括输入层、一个或多个隐藏层以及输出层。在这个例子中,将使用Python的NumPy库来处理数学运算,并使用Sigmoid函数作为激活函数。将实现一个用于二分类的简单神经网络。

以下是构建和训练该神经网络的步骤和相应的Python代码:

1. 导入必要的库

import numpy as np
# Sigmoid激活函数及其导数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
return x * (1 - x)

2. 初始化参数

需要随机初始化权重和偏置。

def initialize_parameters(input_size, hidden_size, output_size):
np.random.seed(3) # 设置随机种子以确保结果可重复
W1 = np.random.randn(input_size, hidden_size) * 0.01
b1 = np.zeros((1, hidden_size))
W2 = np.random.randn(hidden_size, output_size) * 0.01
b2 = np.zeros((1, output_size))
return {"W1": W1, "b1": b1, "W2": W2, "b2": b2}

3. 前向传播

def forward_propagation(X, parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = np.dot(X, W1) + b1
A1 = sigmoid(Z1)
Z2 = np.dot(A1, W2) + b2
A2 = sigmoid(Z2)
cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2}
return A2, cache

4. 计算损失

将使用交叉熵损失函数。

def compute_cost(A2, Y):
m = Y.shape[1]
logprobs = np.multiply(-np.log(A2), Y) + np.multiply(-np.log(1 - A2), 1 - Y)
cost = np.sum(logprobs) / m
return cost

5. 反向传播

def backward_propagation(parameters, cache, X, Y):
m = X.shape[1]
A2 = cache["A2"]
Z1 = cache["Z1"]
A1 = cache["A1"]
W2 = parameters["W2"]
dZ2 = A2 - Y
dW2 = np.dot(A1.T, dZ2) / m
db2 = np.sum(dZ2, axis=1, keepdims=True) / m
dZ1 = np.dot(dZ2, W2.T) * sigmoid_derivative(A1)
dW1 = np.dot(X.T, dZ1) / m
db1 = np.sum(dZ1, axis=1, keepdims=True) / m
grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}
return grads

6. 更新参数

def update_parameters(parameters, grads, learning_rate=0.01):
parameters["W1"] -= learning_rate * grads["dW1"]
parameters["b1"] -= learning_rate * grads["db1"]
parameters["W2"] -= learning_rate * grads["dW2"]
parameters["b2"] -= learning_rate * grads["db2"]
return parameters

7. 整合模型

def nn_model(X, Y, hidden_size, num_iterations=10000, print_cost=True):
np.random.seed(3)
n_x = X.shape[0]
n_y = Y.shape[0]
parameters = initialize_parameters(n_x, hidden_size, n_y)
for i in range(0, num_iterations):
A2, cache = forward_propagation(X, parameters)
cost = compute_cost(A2, Y)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads)
if print_cost and i % 1000 == 0:
print("Cost after iteration %i: %f" %(i, cost))
return parameters

这篇关于python实现人工神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110652

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.