本文主要是介绍python实现人工神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
要编写一个简单的人工神经网络(ANN)程序,可以从一个基本的前馈神经网络开始,该网络通常包括输入层、一个或多个隐藏层以及输出层。在这个例子中,将使用Python的NumPy库来处理数学运算,并使用Sigmoid函数作为激活函数。将实现一个用于二分类的简单神经网络。
以下是构建和训练该神经网络的步骤和相应的Python代码:
1. 导入必要的库
| import numpy as np |
| |
| # Sigmoid激活函数及其导数 |
| def sigmoid(x): |
| return 1 / (1 + np.exp(-x)) |
| |
| def sigmoid_derivative(x): |
| return x * (1 - x) |
2. 初始化参数
需要随机初始化权重和偏置。
| def initialize_parameters(input_size, hidden_size, output_size): |
| np.random.seed(3) # 设置随机种子以确保结果可重复 |
| W1 = np.random.randn(input_size, hidden_size) * 0.01 |
| b1 = np.zeros((1, hidden_size)) |
| W2 = np.random.randn(hidden_size, output_size) * 0.01 |
| b2 = np.zeros((1, output_size)) |
| |
| return {"W1": W1, "b1": b1, "W2": W2, "b2": b2} |
3. 前向传播
| def forward_propagation(X, parameters): |
| W1 = parameters["W1"] |
| b1 = parameters["b1"] |
| W2 = parameters["W2"] |
| b2 = parameters["b2"] |
| |
| Z1 = np.dot(X, W1) + b1 |
| A1 = sigmoid(Z1) |
| Z2 = np.dot(A1, W2) + b2 |
| A2 = sigmoid(Z2) |
| |
| cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2} |
| return A2, cache |
4. 计算损失
将使用交叉熵损失函数。
| def compute_cost(A2, Y): |
| m = Y.shape[1] |
| logprobs = np.multiply(-np.log(A2), Y) + np.multiply(-np.log(1 - A2), 1 - Y) |
| cost = np.sum(logprobs) / m |
| return cost |
5. 反向传播
| def backward_propagation(parameters, cache, X, Y): |
| m = X.shape[1] |
| |
| A2 = cache["A2"] |
| Z1 = cache["Z1"] |
| A1 = cache["A1"] |
| W2 = parameters["W2"] |
| |
| dZ2 = A2 - Y |
| dW2 = np.dot(A1.T, dZ2) / m |
| db2 = np.sum(dZ2, axis=1, keepdims=True) / m |
| |
| dZ1 = np.dot(dZ2, W2.T) * sigmoid_derivative(A1) |
| dW1 = np.dot(X.T, dZ1) / m |
| db1 = np.sum(dZ1, axis=1, keepdims=True) / m |
| |
| grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2} |
| return grads |
6. 更新参数
| def update_parameters(parameters, grads, learning_rate=0.01): |
| parameters["W1"] -= learning_rate * grads["dW1"] |
| parameters["b1"] -= learning_rate * grads["db1"] |
| parameters["W2"] -= learning_rate * grads["dW2"] |
| parameters["b2"] -= learning_rate * grads["db2"] |
| |
| return parameters |
7. 整合模型
| def nn_model(X, Y, hidden_size, num_iterations=10000, print_cost=True): |
| np.random.seed(3) |
| n_x = X.shape[0] |
| n_y = Y.shape[0] |
| parameters = initialize_parameters(n_x, hidden_size, n_y) |
| |
| for i in range(0, num_iterations): |
| A2, cache = forward_propagation(X, parameters) |
| cost = compute_cost(A2, Y) |
| grads = backward_propagation(parameters, cache, X, Y) |
| parameters = update_parameters(parameters, grads) |
| |
| if print_cost and i % 1000 == 0: |
| print("Cost after iteration %i: %f" %(i, cost)) |
| |
| return parameters |
这篇关于python实现人工神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!