NYOJ 191 POJ 1012 Joseph(约瑟夫环问题)

2024-08-27 02:58

本文主要是介绍NYOJ 191 POJ 1012 Joseph(约瑟夫环问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链接:click here~~

题意:假设有2k个人围着一个圆桌坐着,前k个是好人,后k个是坏人 。现在开始,每m个人踢掉一个,比如有6个人,m=5,那么,被踢掉的人依次是5,4,6,2,3,1。现在要求,在踢掉第一个好人前,必需把所有的坏人踢掉,问,给定一个k,求满足这个要求的最小的m,现在希望你写一个程序,快速的帮助小珂,计算出来这个m。

思路:我们来回想一下最基本的约瑟夫环问题, n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求最后余下的人编号,我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):  k k+1 k+2 ... n-2, n-1, 0, 1, 2, ... k-2  并且从k开始报0,如果做一下转换:  k --> 0  k+1 --> 1  k+2 --> 2  ...  ...  k-2 --> n-2  k-1 --> n-1  变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终剩下的人,那么根据上面这个表把这个x带回去就是n个人情况的解,变回去的公式很简单,x'=(x+k)%n  如何知道(n-1)个人报数的问题--只要知道(n-2)个人的解,(n-2)个人的解--求(n-3)的情况 ---- 递推公式:  f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n] 。

递推公式  f[1]=0;  f[i]=(f[i-1]+m)%i; (i>1) 

思路分析参考:http://www.cnblogs.com/yu-chao/archive/2011/05/29/2062276.html

代码:

#include <math.h>
#include <queue>
#include <deque>
#include <vector>
#include <stack>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>using namespace std;
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define mem(a,b) memset(a,b,sizeof(a))
int dir[4][2]= {{1,0},{-1,0},{0,1},{0,-1}};
const double eps = 1e-6;
const double Pi = acos(-1.0);
static const int inf= ~0U>>2;
static const int maxn = 502;
int k;
int f[] = {2, 7, 5, 30, 169, 441, 1872, 7632, 1740, 93313, 459901, 1358657, 2504881,13482720};
//bool check(int num)
//{
//    for(int i = 1; i <= k; i++)
//    {
//        int pos = i;
//        for(int j = k+1; j <= 2*k; j++)
//        {
//            pos = (pos+num)%j;
//            if(pos == 0) pos = j;
//        }
//        if(pos > k) return 0;
//    }
//    return 1;
//}
int main()
{while(~scanf("%d", &k)&& k){cout << f[k-1] << endl;}return 0;
}      
When you want to give up, think of why you persist until now!

这篇关于NYOJ 191 POJ 1012 Joseph(约瑟夫环问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110443

相关文章

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题