重头开始嵌入式第二十七天(Linux系统编程 信号通信)

2024-08-27 02:28

本文主要是介绍重头开始嵌入式第二十七天(Linux系统编程 信号通信),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

进程间通信 ===》

1.信号通信

1.信号的五种类型:

2.kill

1、信号  kill  -l  ==>前32个有具体含义的信号

3.信号注册函数原型:

1.自定义信号处理:

2、在所有的信号中有如下两个特列:

 2.共享内存  信号量集

1.key创建方式有三种:

共享内存 ===》效率最高的进程间通信方式

1、申请对象:

2.映射对象:shmat()

3.读写共享内存:类似堆区内存的直接读写:

4.撤销映射:shmdt

5.删除对象:shmctl

3.IPC对象之信号量集 ==>sem ===》为了解决共享内存的临界资源访问

1、申请信号量  semget()

2、pv操作;semop


进程间通信 ===》

1.信号通信


应用:异步通信,中断。
1~64;32应用编程。
如何响应:

1.信号的五种类型:


 Term        Default action is to terminate the process.
 Ign            Default action is to ignore the signal.
 Core   Default action is to  terminate  the  process  and  dump  core  (see core(5)).
 Stop   Default action is to stop the process.
 Cont   Default  action  is  to  continue  the  process  if  it is currently stopped.

2.kill

原型:kill      -xx     xxxx
发送进程  信号    接收进程
kill -9 1000
a.out  9 1000
1、发送端

函数原型:

#include <sys/types.h>
#include <signal.h>int kill(pid_t pid, int sig);


功能:通过该函数可以给pid进程发送信号为sig的系统信号。
参数:pid 要接收信号的进程pid
  sig 当前程序要发送的信号编号 《=== kill  -l
返回值:成功 0
失败  -1;

1、信号  kill  -l  ==>前32个有具体含义的信号

以下是前 32 个有具体含义的信号:

1. SIGHUP:终端挂起或者控制进程终止。

2. SIGINT:中断信号,通常由用户按下 Ctrl+C 产生。

3. SIGQUIT:退出信号,通常由用户按下 Ctrl+\ 产生。

4. SIGILL:非法指令信号。

5. SIGTRAP:跟踪陷阱信号。

6. SIGABRT:异常终止信号,通常由调用 abort 函数产生。

7. SIGBUS:总线错误信号。

8. SIGFPE:浮点异常信号。

9. SIGKILL:立即终止信号,无法被捕获或忽略。

10. SIGUSR1:用户定义信号 1。

11. SIGSEGV:段错误信号。

12. SIGUSR2:用户定义信号 2。

13. SIGPIPE:管道破裂信号。

14. SIGALRM:闹钟信号。

15. SIGTERM:终止信号,可以被进程捕获并进行一些清理操作后再终止。

16. SIGSTKFLT:协处理器栈错误信号。

17. SIGCHLD:子进程状态改变信号。

18. SIGCONT:继续执行被暂停的进程。

19. SIGSTOP:停止信号,无法被捕获或忽略。

20. SIGTSTP:终端停止信号,通常由用户按下 Ctrl+Z 产生。

21. SIGTTIN:后台进程从终端读取数据时收到的信号。

22. SIGTTOU:后台进程向终端写数据时收到的信号。

23. SIGURG:紧急情况信号,通知有紧急数据在套接字上。

24. SIGXCPU:超过 CPU 时间限制信号。

25. SIGXFSZ:超过文件大小限制信号。

26. SIGVTALRM:虚拟定时器信号。

27. SIGPROF:性能分析定时器信号。

28. SIGWINCH:窗口大小改变信号。

29. SIGIO:异步 I/O 信号。

30. SIGPWR:电源故障信号。

31. SIGSYS:系统调用错误信号。

32. SIGRTMIN:实时信号最小值。

3.信号注册函数原型:


 
 void ( *signal(int signum, void (*handler)(int)) ) (int);


 typedef void (*sighandler_t)(int);
 ===》void (*xx)(int); == void fun(int);
 ===》xx是 void fun(int) 类型函数的函数指针
 ===》typedef void(*xx)(int)   sighandler_t; ///错误
  typedef int   myint;

 ===>sighandler_t signal(int signum, sighandler_t handler);
 ===> signal(int sig, sighandler_t fun);
 ===> signal(int sig, xxx fun);
 ===>fun 有三个宏表示:

SIG_DFL 表示默认处理
   SIG_IGN 表示忽略处理
   fun     表示自定义处理

1.自定义信号处理:


1、必须事先定义自定义函数,必须是如下格式:
void fun(int sig)  sig 接收到的信息编号
{

}


2、在所有的信号中有如下两个特列:


10 SIGUSR1
12 SIGUSR2
专门预留给程序员使用的未定义信号。

 2.共享内存  信号量集

shm,sem,msg
system v :  共享内存  信号量集

IPC对象操作通用框架:
0x  ftok
key值 ==> 申请 ==》读写 ==》关闭 ==》卸载



key值:唯一键值


1.key创建方式有三种:



1、IPC_PRIVATE 固定的私有键值,其值等于 0x0
一般用于有亲缘关系的进程间使用。

2、ftok()创建临时键值。
#include <sys/types.h>
#include <sys/ipc.h>
"/etc" '!'
key_t ftok(const char *pathname, int proj_id);
功能:通过该函数可以将pathname指定的路径用来以
  proj_id生成唯一的临时键值。
参数:pathname 路径+名称===》任意文件,只要不会
  被删除重建即可。
  proj_id  整形的数字,一般用ASCII码的单字符
  表示与参数1的运算。

返回值:成功 返回唯一键值
失败  -1;

 


ipcs -a 查询共享内存,信号量集,消息队列
ipcrm -s 删除信号量集
  -m 删除共享内存


共享内存 ===》效率最高的进程间通信方式



操作流程:
 key ==》申请对象 ==》映射对象==》读写对象
 ==》撤销映射 ==》删除对象



1、申请对象:

shmget()
#include <sys/ipc.h>
#include <sys/shm.h>
ps aux|grep a.out
share memory get  IPC_CREAT|0666
int shmget(key_t key, size_t size, int shmflg);


功能:使用唯一键值key向内核提出共享内存使用申请
参数:key  唯一键值
  size  要申请的共享内存大小
  shmflg 申请的共享内存访问权限,八进制表示
  如果是第一个申请,则用IPC_CREAT
  如果要检测是否存在,用IPC_EXCL
返回值:成功 返回共享内存id,一般用shmid表示
失败  -1;

share memory attach


2.映射对象:shmat()

void *shmat(int shmid, const void *shmaddr, int shmflg);


功能:将指定shmid对应的共享内存映射到本地内存。
参数:shmid 要映射的本地内存
  shmaddr 本地可用的地址,如果不确定则用NULL,表示
  由系统自动分配。
  shmflg  
  0,表示读写
  SHM_RDONLY,只读
返回值:成功 返回映射的地址,一般等于shmaddr
失败 (void*)-1
 


3.读写共享内存:类似堆区内存的直接读写:


char * p ;

write(fd,p,);
read(fd,p,1024);
memcpy(p,buf,1024);strcpy();
memset(p,0,1024);== bzero(p,1024);
memcmp(p,buf,1024); strcmp(a,b);



字符串:  strcpy(p,"hello");
字符/数字: 直接赋值

4.撤销映射:shmdt


int shmdt(const void *shmaddr);
功能:将本地内存与共享内存断开映射关系。
参数:shmaddr 要断开的映射地址。
返回值:成功  0
失败  -1;



5.删除对象:shmctl


int shmctl(int shmid, int cmd, struct shmid_ds *buf);
功能:修改共享内存属性,也可以删除指定的共享内存对象。
参数:shmid 要删除的共享内存对象
  cmd IPC_RMID 删除对象的宏
  buff NULL 表示只删除对象。
返回值:成功 0
失败 -1
以上共享内存可能存在如下问题:
进程1 写入共享内存,如何通知进程2 读共享内存。



3.IPC对象之信号量集 ==>sem ===》为了解决共享内存的临界资源访问

 


操作流程:
key ==> 申请信号量集 ==》init==>PV操作 ===》删除信号量


semaphore


1、申请信号量  semget()


#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);
功能:通过唯一键值向内核提出信号量申请。
参数:key 唯一键值
  nsems 要申请的信号量个数
  semflg 申请的信号量的访问权限
返回值:semid.
失败 -1;


2、pv操作;semop


p ==>sem_wait() ==>sem = sem-1;
v ==>sem_post() ==>sem = sem+1;

int semop(int semid, struct sembuf *sops, unsigned nsops);
功能:修改指定信号量集中信号量的值。
参数:semid 信号量集id
  sops ==》结构体如下:
  struct sembuf
  {
  unsigned short sem_num;  ///信号量集中信号量的编号,默认以0开始
  short  sem_op;   ///信号量的PV操作,如果改值等于-1则表示p
  等于1 则表示v
  等于0 则表示阻塞

  short   sem_flg;   ///信号量的操作方式 0 表示默认阻塞。
  IPC_NOWAIT and SEM_UNDO.
  };
  nsops 信号量的设置值个数。
返回值:成功 0
失败 -1

通常会将以上函数做如下自定义封装:

int my_sem_wait(int id,int sem)
{
struct sembuf mysem;
mysem.sem_num = sem;
mysem.sem_op  = -1;
mysem.flg   = 0;if(semop(id,&mysem,1) < 0)
return -1;
else
return 0;
}int my_sem_post(int id,int sem)
{
struct sembuf mysem;
mysem.sem_num = sem;
mysem.sem_op  = 1;
mysem.flg   = 0;if(semop(id,&mysem,1) < 0)
return -1;
else
return 0;
}


3、信号量的删除
 

int semctl(int semid, int semnum, int cmd, ...);
 功能:根据semid删除指定的信号量集
 参数:semid 要删除的信号量集
   semnum 要删除的信号量集中的信号量的编号
   cmd IPC_RMID 删除对象宏
   ...  可变长参数可以不写
返回值:成功 0
失败 -1;
 

这篇关于重头开始嵌入式第二十七天(Linux系统编程 信号通信)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110372

相关文章

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Linux环境变量&&进程地址空间详解

《Linux环境变量&&进程地址空间详解》本文介绍了Linux环境变量、命令行参数、进程地址空间以及Linux内核进程调度队列的相关知识,环境变量是系统运行环境的参数,命令行参数用于传递给程序的参数,... 目录一、初步认识环境变量1.1常见的环境变量1.2环境变量的基本概念二、命令行参数2.1通过命令编程

Linux之进程状态&&进程优先级详解

《Linux之进程状态&&进程优先级详解》文章介绍了操作系统中进程的状态,包括运行状态、阻塞状态和挂起状态,并详细解释了Linux下进程的具体状态及其管理,此外,文章还讨论了进程的优先级、查看和修改进... 目录一、操作系统的进程状态1.1运行状态1.2阻塞状态1.3挂起二、linux下具体的状态三、进程的