dpdk解析报文协议-基于l2fwd

2024-08-26 07:44
文章标签 协议 解析 报文 dpdk l2fwd

本文主要是介绍dpdk解析报文协议-基于l2fwd,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

dpdk解析报文协议-基于l2fwd

0 前置条件

1、这里需要两台虚拟机,配置了相同的虚拟网络,可以通过tcpreplay在一台虚拟机回放报文,在另一台虚拟机通过tcpdump -i 网卡名 捕获到。

具体配置可参考https://www.jb51.net/server/2946942fw.htm

2、需要dpdk环境配置完成

3、大致了解计算机网络的以太网层、ip层、tcp/udp层、应用层http等之间的关系,如下图所示

image

1 l2fwd运行

进入example中的l2fwd代码目录下,执行下列命令

export RTE_TARGET=x86_64-native-linuxapp-gcc
export RTE_SDK=/home/chen/code/dpdk/dpdk-stable-19.11.14
make# 运行
sudo ./build/l2fwd -l 0-1 -- -p 0x3 -T 1

如果一切正常,则应该输出下图,可以通过在另一台虚拟机回放相关报文,观察统计信息变化情况​​

image

# 另一台虚拟机
sudo tcpreplay -i ens38 xxxx.pcap

image

在运行l2fwd的虚拟机上可以看到

image

此时说明前面的没问题。

2 l2fwd 整体代码解析

目前浅显的理解可以认为其他部分在初始化,主循环为l2fwd_main_loop

3 l2fwd 修改

1、原先的l2fwd_simple_forward​函数是负责修改mac地址并转发报文,那么我们也可以在l2fwd所在的那层循环中,去做解析报文。

		// 遍历所有配置的接收端口for (i = 0; i < qconf->n_rx_port; i++) {// 从接收端口列表 qconf->rx_port_list 中获取当前迭代的端口 ID。portid = qconf->rx_port_list[i];// 调用 rte_eth_rx_burst 函数从指定的端口(portid)接收数据包nb_rx = rte_eth_rx_burst(portid, 0,pkts_burst, MAX_PKT_BURST);port_statistics[portid].rx += nb_rx;// printf("nb_rx: %d\n", nb_rx);for (j = 0; j < nb_rx; j++) {m = pkts_burst[j];rte_prefetch0(rte_pktmbuf_mtod(m, void *));parse_packet(m);// l2fwd_simple_forward(m, portid);}}

2、我们可以增加一个parse_packet​函数,参照l2fwd_mac_updating​中的处理流程,使用官方api rte_pktmbuf_mtod​获得以太网头部信息,并存入rte_ether_hdr​结构体。

void parse_packet(struct rte_mbuf *m) {struct rte_ether_hdr *eth_hdr;eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);unsigned int total_length = rte_pktmbuf_pkt_len(mbuf); // 获取整个包的长度unsigned int ether_hdr_len = sizeof(struct rte_ether_hdr); // 以太网头部长度unsigned int data_len = total_length - ether_hdr_len; // 剩余数据长度(去除以太网头部)
}/*** Ethernet header: Contains the destination address, source address* and frame type.*/
struct rte_ether_hdr {struct rte_ether_addr d_addr; /**< Destination address. */struct rte_ether_addr s_addr; /**< Source address. */uint16_t ether_type;      /**< Frame type. */
} __attribute__((aligned(2)));

此时可以得到原mac和目的mac,以及ip版本,和下图的MAC帧是对应的。

image

3、通过ip类型,判断是ipv4还是ipv6,进行不同的处理,这里面需要注意的是有大小端的转换(RTE_ETHER_TYPE_IPV4是大端),用rte_be_to_cpu_16。ip层相关的信息都保存在ipv4_hdr​中

    // 检查 IP 版本并获取 IP 头部if (eth_hdr->ether_type <span style="font-weight: bold;" class="mark"> rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4)) {parse_packet_ipv4((struct rte_ipv4_hdr *)(eth_hdr + 1), data_len); // 由于以太网头部长度固定,这里直接调过以太网头部字段,// 处理 IPv4 头部...} else if (eth_hdr->ether_type </span> rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV6)) {printf("ipv6\n");// struct rte_ipv6_hdr *ipv6_hdr;}/*** IPv4 Header*/
struct rte_ipv4_hdr {uint8_t  version_ihl;		/**< version and header length */uint8_t  type_of_service;	/**< type of service */rte_be16_t total_length;	/**< length of packet */rte_be16_t packet_id;		/**< packet ID */rte_be16_t fragment_offset;	/**< fragmentation offset */uint8_t  time_to_live;		/**< time to live */uint8_t  next_proto_id;		/**< protocol ID */rte_be16_t hdr_checksum;	/**< header checksum */rte_be32_t src_addr;		/**< source address */rte_be32_t dst_addr;		/**< destination address */
} __attribute__((__packed__));

image

4、通过ip层协议标识next_proto_id​判断是tcp还是udp

void parse_packet_ipv4(struct rte_ipv4_hdr *ipv4_hdr, unsigned int data_len) {print_ipv4_addr("ipv4_src_addr:", ipv4_hdr->src_addr);print_ipv4_addr("ipv4_dst_addr:", ipv4_hdr->dst_addr);unsigned int ipv4_hdr_len = (ipv4_hdr->version_ihl & 0x0F) * 4; // 头部长度以4字节为单位// 检查协议类型并获取 TCP/UDP 头部if (ipv4_hdr->next_proto_id <span style="font-weight: bold;" class="mark"> IPPROTO_TCP) {parse_packet_tcp((struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr + ipv4_hdr_len), data_len - ipv4_hdr_len);// 处理 TCP 头部...} else if (ipv4_hdr->next_proto_id </span> IPPROTO_UDP) {parse_packet_udp((struct rte_udp_hdr *)((unsigned char *)ipv4_hdr + ipv4_hdr_len), data_len - ipv4_hdr_len);// 处理 UDP 头部...}
}struct rte_tcp_hdr {rte_be16_t src_port; /**< TCP source port. */rte_be16_t dst_port; /**< TCP destination port. */rte_be32_t sent_seq; /**< TX data sequence number. */rte_be32_t recv_ack; /**< RX data acknowledgment sequence number. */uint8_t  data_off;   /**< Data offset. */uint8_t  tcp_flags;  /**< TCP flags */rte_be16_t rx_win;   /**< RX flow control window. */rte_be16_t cksum;    /**< TCP checksum. */rte_be16_t tcp_urp;  /**< TCP urgent pointer, if any. */
} __attribute__((__packed__));struct rte_udp_hdr {rte_be16_t src_port;    /**< UDP source port. */rte_be16_t dst_port;    /**< UDP destination port. */rte_be16_t dgram_len;   /**< UDP datagram length */rte_be16_t dgram_cksum; /**< UDP datagram checksum */
} __attribute__((__packed__));

image

image

5、以tcp为例,判断是否是http(这里简单判断端口是否为80)

	void parse_packet_tcp(struct rte_tcp_hdr *tcp_hdr, unsigned int data_len) {unsigned int tcp_hdr_len = ((tcp_hdr->data_off & 0xF0) >> 4) * 4; // 高 4 位表示 TCP 头部的长度unsigned char *tcp_payload = ((unsigned char *)tcp_hdr) + tcp_hdr_len;unsigned int tcp_payload_len = data_len - tcp_hdr_len; // TCP 负载长度// 将端口从网络字节序转换为主机字节序uint16_t port_host_order = rte_be_to_cpu_16(tcp_hdr->dst_port);if (port_host_order == 80) {parse_packet_http(tcp_payload, tcp_payload_len);}
}

6、打印http负载,由于http负载的结束有很多种情况(ip是否分片,http流是否结束等),所以需要基于报文长度依次减去各部分的头部来确定http负载的长度

void parse_packet_http(unsigned char *http_payload, unsigned int data_len) {// http 以 \r\n换行printf("HTTP Payload:\n");for (unsigned int i = 0; i < data_len; ++i) {char c = http_payload[i];if (isprint(c) || c <span style="font-weight: bold;" class="mark"> '\n' || c </span> '\r') {printf("%c", c);} else {printf("."); // 非可打印字符用点号表示}}printf("\n");
}

image

这篇关于dpdk解析报文协议-基于l2fwd的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107961

相关文章

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象