python之多线程和多进程以及threading和multiprocessing模块

2024-08-26 00:44

本文主要是介绍python之多线程和多进程以及threading和multiprocessing模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 Python 中,多线程和多进程是实现并发编程的两种主要方式。多线程适用于 I/O 密集型任务,而多进程适用于 CPU 密集型任务。Python 提供了 threading 模块用于多线程编程,提供了 multiprocessing 模块用于多进程编程。

多线程

基本用法

使用 threading 模块可以创建和管理线程。以下是一个简单的多线程示例:

import threading
import timedef worker(name):print(f"Thread {name} starting")time.sleep(2)print(f"Thread {name} finishing")# 创建线程
thread1 = threading.Thread(target=worker, args=("A",))
thread2 = threading.Thread(target=worker, args=("B",))# 启动线程
thread1.start()
thread2.start()# 等待线程完成
thread1.join()
thread2.join()print("All threads finished")
线程锁

线程锁用于防止多个线程同时访问共享资源,避免竞争条件。以下是一个使用线程锁的示例:

import threadinglock = threading.Lock()
counter = 0def increment_counter():global counterfor _ in range(100000):with lock:counter += 1# 创建线程
threads = []
for i in range(10):thread = threading.Thread(target=increment_counter)threads.append(thread)thread.start()# 等待线程完成
for thread in threads:thread.join()print(f"Final counter value: {counter}")

多进程

基本用法

使用 multiprocessing 模块可以创建和管理进程。以下是一个简单的多进程示例:

import multiprocessing
import timedef worker(name):print(f"Process {name} starting")time.sleep(2)print(f"Process {name} finishing")# 创建进程
process1 = multiprocessing.Process(target=worker, args=("A",))
process2 = multiprocessing.Process(target=worker, args=("B",))# 启动进程
process1.start()
process2.start()# 等待进程完成
process1.join()
process2.join()print("All processes finished")
进程锁

进程锁用于防止多个进程同时访问共享资源,避免竞争条件。以下是一个使用进程锁的示例:

import multiprocessinglock = multiprocessing.Lock()
counter = multiprocessing.Value('i', 0)def increment_counter():for _ in range(100000):with lock:counter.value += 1# 创建进程
processes = []
for i in range(10):process = multiprocessing.Process(target=increment_counter)processes.append(process)process.start()# 等待进程完成
for process in processes:process.join()print(f"Final counter value: {counter.value}")

threading 模块

threading 模块用于在单个进程中创建和管理多个线程。线程是轻量级的,并且共享相同的内存空间。

参数
  1. target:

    • 类型: 可调用对象
    • 说明: 线程启动后要执行的函数或方法。
  2. name:

    • 类型: 字符串
    • 说明: 线程的名称。默认情况下,Python 会自动生成一个唯一的名称。
  3. args:

    • 类型: 元组
    • 说明: 传递给 target 函数的位置参数。
  4. kwargs:

    • 类型: 字典
    • 说明: 传递给 target 函数的关键字参数。
  5. daemon:

    • 类型: 布尔值
    • 说明: 如果设置为 True,则表示该线程是守护线程。当所有非守护线程结束时,程序将退出,即使守护线程仍在运行
示例
import threadingdef worker(arg1, arg2, kwarg1=None):print(f"Worker thread is running with arguments: {arg1}, {arg2}, {kwarg1}")# 创建线程,传递位置参数和关键字参数
thread = threading.Thread(target=worker,args=(10, 20),kwargs={'kwarg1': 'example'},name='MyWorkerThread',daemon=True
)# 启动线程
thread.start()# 等待线程完成
thread.join()
  • target=worker: 指定线程要执行的函数是 worker
  • args=(10, 20): 传递给 worker 函数的位置参数是 1020
  • kwargs={'kwarg1': 'example'}: 传递给 worker 函数的关键字参数是 kwarg1='example'
  • name='MyWorkerThread': 指定线程的名称为 MyWorkerThread
  • daemon=True: 将线程设置为守护线程。
基本用法
  1. 创建线程
import threadingdef worker():print("Worker thread is running")# 创建线程
thread = threading.Thread(target=worker)# 启动线程
thread.start()# 等待线程完成
thread.join()
  1. 使用子类创建线程
import threadingclass MyThread(threading.Thread):def run(self):print("MyThread is running")# 创建线程
thread = MyThread()# 启动线程
thread.start()# 等待线程完成
thread.join()
  1. 线程同步

使用 threading.Lock 来确保线程安全。

import threadinglock = threading.Lock()def worker():with lock:# 线程安全的代码块print("Worker thread is running")# 创建多个线程
threads = [threading.Thread(target=worker) for _ in range(5)]# 启动所有线程
for thread in threads:thread.start()# 等待所有线程完成
for thread in threads:thread.join()

multiprocessing 模块

multiprocessing 模块用于创建和管理多个进程。每个进程都有自己独立的内存空间,因此适用于 CPU 密集型任务。
multiprocessing 模块中,multiprocessing.Process 类用于创建和管理进程。与 threading.Thread 类似,multiprocessing.Process 也接受一些参数来配置进程的行为。以下是 multiprocessing.Process 的常用参数及其解释:

multiprocessing.Process 参数
  1. target:

    • 类型: 可调用对象
    • 说明: 进程启动后要执行的函数或方法。
  2. name:

    • 类型: 字符串
    • 说明: 进程的名称。默认情况下,Python 会自动生成一个唯一的名称。
  3. args:

    • 类型: 元组
    • 说明: 传递给 target 函数的位置参数。
  4. kwargs:

    • 类型: 字典
    • 说明: 传递给 target 函数的关键字参数。
  5. daemon:

    • 类型: 布尔值
    • 说明: 如果设置为 True,则表示该进程是守护进程。当所有非守护进程结束时,程序将退出,即使守护进程仍在运行。
示例
import multiprocessingdef worker(arg1, arg2, kwarg1=None):print(f"Worker process is running with arguments: {arg1}, {arg2}, {kwarg1}")# 创建进程,传递位置参数和关键字参数
process = multiprocessing.Process(target=worker,args=(10, 20),kwargs={'kwarg1': 'example'},name='MyWorkerProcess',daemon=True
)# 启动进程
process.start()# 等待进程完成
process.join()
  • target=worker: 指定进程要执行的函数是 worker
  • args=(10, 20): 传递给 worker 函数的位置参数是 1020
  • kwargs={'kwarg1': 'example'}: 传递给 worker 函数的关键字参数是 kwarg1='example'
  • name='MyWorkerProcess': 指定进程的名称为 MyWorkerProcess
  • daemon=True: 将进程设置为守护进程。
进程的启动和等待
  • process.start(): 启动进程,调用 worker 函数。
  • process.join(): 等待进程完成。在 process.join() 被调用之前,主进程会被阻塞。
进程间通信

multiprocessing 模块还提供了多种进程间通信的方式,如 QueuePipeValueArray 等。

使用 Queue 进行进程间通信
import multiprocessingdef worker(queue):queue.put("Message from worker")# 创建队列
queue = multiprocessing.Queue()# 创建进程
process = multiprocessing.Process(target=worker, args=(queue,))# 启动进程
process.start()# 等待进程完成
process.join()# 获取队列中的消息
message = queue.get()
print(message)
使用 Pipe 进行进程间通信
import multiprocessingdef worker(conn):conn.send("Message from worker")conn.close()# 创建管道
parent_conn, child_conn = multiprocessing.Pipe()# 创建进程
process = multiprocessing.Process(target=worker, args=(child_conn,))# 启动进程
process.start()# 等待进程完成
process.join()# 获取管道中的消息
message = parent_conn.recv()
print(message)

通过这些参数和通信方式,你可以灵活地配置和管理进程的行为,并实现进程间的通信。

基本用法
  1. 创建进程
import multiprocessingdef worker():print("Worker process is running")# 创建进程
process = multiprocessing.Process(target=worker)# 启动进程
process.start()# 等待进程完成
process.join()
  1. 使用子类创建进程
import multiprocessingclass MyProcess(multiprocessing.Process):def run(self):print("MyProcess is running")# 创建进程
process = MyProcess()# 启动进程
process.start()# 等待进程完成
process.join()
  1. 进程间通信

使用 multiprocessing.Queuemultiprocessing.Pipe 进行进程间通信。

import multiprocessingdef worker(queue):queue.put("Message from worker")# 创建队列
queue = multiprocessing.Queue()# 创建进程
process = multiprocessing.Process(target=worker, args=(queue,))# 启动进程
process.start()# 等待进程完成
process.join()# 获取队列中的消息
message = queue.get()
print(message)
  1. 进程池

使用 multiprocessing.Pool 来管理进程池。

import multiprocessingdef worker(x):return x * x# 创建进程池
with multiprocessing.Pool(4) as pool:results = pool.map(worker, [1, 2, 3, 4, 5])print(results)

这篇关于python之多线程和多进程以及threading和multiprocessing模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1107065

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文