使用递归高斯滤波器实现快速高斯模糊

2024-08-25 23:48

本文主要是介绍使用递归高斯滤波器实现快速高斯模糊,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


转自:使用递归高斯滤波器实现快速高斯模糊

高斯窗常用于对图像进行模糊或低通滤噪,但是随着高斯半径的增加,时间消耗会逐级增加

如高斯半径为N时,计算每个输出采样点需要计算的乘法次数为(2N+1)*模糊方向数,加法次数为2N*模糊方向数,这种情况下,当N=100时,甚至更大时,计算量是非常大的,即使进行SIMD指令集优化,在很多情况下仍然不能满足要求,比如N=100时,优化后的汇编代码的执行时间也通常在几百毫秒以上,远不能达到实时处理要求

上述的方法是使用高斯窗口对准的原理进行实现的,属于FIR型滤波,因为对于半径大于N的像素点,其权重取为0,即对当前点无贡献,然而在实际中我们知道,即使在3倍标准差外的像素也应该对中心点有贡献的,虽然很小

 

基于高斯滤波器的普通应用,对它的性能优化便变得很急迫,因而IIR型的高斯滤波器被研究了出来,以及被用于对边缘检测进行低能处理的IIR的高斯微分滤波器也同时被研究了出来,即前一个输出采样点对后一个输出采样点有贡献,公式如下

第一遍,从左到右,或从上到下

w(n) = a0*x(n) + a1*x(n-1) - b1*w(n-1) - b2*w(n-2)

第二遍,从右到右,或从下到上

y(n) = a2*x(n) + a3*x(n+1) - b1*y(n+1) - b2*y(n+2)

其中,a0,a1,a2,a3,b1,b2为滤波系数

最后将两遍的输出相加之各便是最终结果

 

从上述两个公式可以看出,每个输出采样点的计算与高斯半径是没有关系的,而6个滤波系数是高斯半径的函数,只被计算一次,这样,对高斯半径为50、100、300等的处理,每个输出采样点的计算量是相同的,都是乘法次数为8*模糊方向数,加法次数为7*模糊方向数,计算量大幅下降,在很多时候的图像处理能满足性能需求,并且质量不会下降,甚至CPU也能达到实时处理要求

 

上述的方法通常称为并行,这是因为两遍是分开计算的,最后将两遍结果相加。

另一种方向称为串行,即是将第一遍的w(n)作为第二遍的输入

 

参考文献:

(1)IIR Gaussian Blur Filter Implementation using Intel® Advanced Vector Extensions

(2)Recursively implementing the Gaussian and its derivatives

(3)Recursive Gaussian derivative Filters

(4)Recursive Gaussian Filters

(5)Recursivity and PDE’s in Image Processing

 


这篇关于使用递归高斯滤波器实现快速高斯模糊的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106970

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没