构建高效NLP管道:PydanticOutputParser与Langchain的结合

2024-08-25 17:04

本文主要是介绍构建高效NLP管道:PydanticOutputParser与Langchain的结合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PydanticOutputParser 是一个用于解析语言模型输出的实用工具,它允许用户指定一个 Pydantic 模型,并查询语言模型以生成符合该模型的 JSON 输出。这个工具特别有用,因为它可以帮助开发者确保从语言模型获得的结构化数据符合预期的格式,从而简化了数据处理和集成的过程。

使用 PydanticOutputParser 之前,你需要定义一个 Pydantic 模型,这个模型将作为数据的结构模板。Pydantic 的 BaseModel 类似于 Python 的数据类,但它提供了实际的类型检查和数据转换功能。你可以在模型中定义字段,并使用 Field 函数添加额外的元数据,如字段描述。此外,你还可以使用 validator 装饰器来添加自定义验证逻辑,确保数据的正确性。

例如,如果你想要解析一个关于笑话的数据结构,你可以创建一个包含 setup(笑话的铺垫)和 punchline(笑话的结尾)字段的 Pydantic 模型。然后,你可以使用 PydanticOutputParser 来指导语言模型生成符合这个模型的输出。

在实际应用中,你可以将 PydanticOutputParser 与语言模型和其他工具(如 PromptTemplate)结合使用,构建一个完整的数据处理流程。这样,你不仅可以获得结构化的数据输出,还可以通过模板化的方式控制语言模型的输入,使其更加灵活和强大。

总的来说,PydanticOutputParser 是一个强大的工具,它结合了 Pydantic 的数据模型能力和语言模型的生成能力,为开发者提供了一种高效的方式来处理和解析结构化数据。

from typing import Listfrom langchain.output_parsers import PydanticOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain.schema import HumanMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAIclass BookInfo(BaseModel):book_name: str = Field(description="书籍的名字")author_name: str = Field(description="书籍的作者")genres: List[str] = Field(description="书籍的体裁")output_parser = PydanticOutputParser(pydantic_object=BookInfo)  #BookInfo
# 查看输出解析器的内容,会被输出成json格式
print(output_parser.get_format_instructions())prompt = ChatPromptTemplate.from_messages([("system", "{parser_instructions} 你输出的结果请使用中文。"),("human", "请你帮我从书籍的概述中,提取书名、作者,以及书籍的体裁。书籍概述会被三个#符号包围。\n###{book_introduction}###")
])book_introduction = """
《朝花夕拾》原名《旧事重提》,是现代文学家鲁迅的散文集,收录鲁迅于1926年创作的10篇回忆性散文, [1]1928年由北京未名社出版,现编入《鲁迅全集》第2卷。
此文集作为“回忆的记事”,多侧面地反映了作者鲁迅青少年时期的生活,形象地反映了他的性格和志趣的形成经过。前七篇反映他童年时代在绍兴的家庭和私塾中的生活情景,后三篇叙述他从家乡到南京,又到日本留学,然后回国教书的经历;揭露了半殖民地半封建社会种种丑恶的不合理现象,同时反映了有抱负的青年知识分子在旧中国茫茫黑夜中,不畏艰险,寻找光明的困难历程,以及抒发了作者对往日亲友、师长的怀念之情 [2]。
文集以记事为主,饱含着浓烈的抒情气息,往往又夹以议论,做到了抒情、叙事和议论融为一体,优美和谐,朴实感人。作品富有诗情画意,又不时穿插着幽默和讽喻;形象生动,格调明朗,有强烈的感染力。
"""model = ChatOpenAI(model="gpt-3.5-turbo",openai_api_key="sk-BuQK7SGbqCZP2i2z7fF267AeD0004eF095AbC78d2f79E019",openai_api_base="https://api.aigc369.com/v1")
final_prompt = prompt.invoke({"book_introduction": book_introduction,"parser_instructions": output_parser.get_format_instructions()})
response = model.invoke(final_prompt)
print(response.content)
result = output_parser.invoke(response)
print(result)

PydanticOutputParser 被用来创建一个输出解析器,该解析器将根据 BookInfo 模型来解析语言模型的输出。get_format_instructions() 方法返回一个字符串,这个字符串描述了语言模型输出应该如何格式化以匹配 BookInfo 模型。

{"book_name": "书籍的名字","author_name": "书籍的作者","genres": "书籍的体裁"
}

代码能够成功执行,result预期的输出可能如下:

# 这是语言模型的原始响应,具体内容取决于模型的生成结果
{
    "book_name": "朝花夕拾",
    "author_name": "鲁迅",
    "genres": "散文集"
}
# 这是解析后的结果,它将是一个 BookInfo 模型的实例
BookInfo(book_name='朝花夕拾', author_name='鲁迅', genres=['散文集'])

这样输出了JSON数据方便对接数据的二期处理。

这篇关于构建高效NLP管道:PydanticOutputParser与Langchain的结合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106134

相关文章

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

使用Python和python-pptx构建Markdown到PowerPoint转换器

《使用Python和python-pptx构建Markdown到PowerPoint转换器》在这篇博客中,我们将深入分析一个使用Python开发的应用程序,该程序可以将Markdown文件转换为Pow... 目录引言应用概述代码结构与分析1. 类定义与初始化2. 事件处理3. Markdown 处理4. 转

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Linux中的进程间通信之匿名管道解读

《Linux中的进程间通信之匿名管道解读》:本文主要介绍Linux中的进程间通信之匿名管道解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基本概念二、管道1、温故知新2、实现方式3、匿名管道(一)管道中的四种情况(二)管道的特性总结一、基本概念我们知道多

Linux命名管道方式

《Linux命名管道方式》:本文主要介绍Linux命名管道方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、命名管道1、与匿名管道的关系2、工作原理3、系统调用接口4、实现两个进程间通信二、可变参数列表总结一、命名管道1、与匿名管道的关系命名管道由mkf