Dijkstra(c++)

2024-08-24 17:36
文章标签 c++ dijkstra

本文主要是介绍Dijkstra(c++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。

同时dijkstra算法主要用于解决单源最短路问题(边权为正数),其可以分为两种版本,两种版本各有用处,并不存在好坏之分,接下来我们用n代表点的数量,用m代表边的数量

朴素版本dijkstra 时间复杂度 O(n^2) 用于解决稠密图

堆优化dijkstra 时间复杂度O(mlogn) 用于解决稀疏图

可能这里有同学会问,什么是稀疏图,什么是稠密图

这里解答一下,稀疏图指的是图中边的数量远远小于点的数量,稠密图反之,边的数量远远大于点的数量

当然具体的我们也可以用时间复杂度来判断到底是运用哪一种算法

1、朴素版的Dijkstra

集合s表示当前已经确定了最短路的点

1、初始化确定第一个点的距离

dist[1] = 0;一号点到起点的距离为0dist[i] = +无穷;//其他所有的点都是正无穷  或者用一个比较大的数字

2、

for( i : 1 - n)//循环n次
{t = 不在s中的距离最近的点:s = t;用t更新其他点的距离}
题目Dijkstra求最短路 I

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 号点到 n 号点的最短距离,如果无法从1 号点走到 n 号点,则输出 −1。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 −1。

数据范围

1≤n≤500
1≤m≤105
图中涉及边长均不超过10000。

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

思路解析:

1、根据题意画出图

在这里插入图片描述

2、初始化距离

点位1为0 ,其他点为正无穷
在这里插入图片描述

3、第一次迭代

每次迭代,先找到当前所有没有确定点中的最小值

第一次找到的是0
在这里插入图片描述

找到该点之后 再去更新一下其他所有点到起点的距离

在这里插入图片描述

4、第二次迭代

再一次从没有确定的点中找到一个最小值 2和4的最小值为2

在这里插入图片描述

找到该点之后 再去更新一下其他所有点到起点的距离

1 -> 2 -> 3距离为 3

1 -> 3距离为4

在这里插入图片描述

5、下一轮迭代

只剩一个3

在这里插入图片描述

自环是指从自己出发又回到自己

在这里插入图片描述

重边是指两个点之间有多条变 只需要保留两条边中长度最小的边

在这里插入图片描述

代码
#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 510;int n, m;
int g[N][N];
int dist[N];//表示的是从1号点走到每一个点的距离是多少
bool st[N];//表示每一个点的最短路是否已经确定了int dijkstra()
{//把一号点初始化为0  其他点为正无穷memset(dist,0x3f,sizeof dist);dist[1] = 0;for (int i = 0; i < n; i++)//迭代n次{int t = -1;for (int j = 1; j <= n; j++)//如果说当前这个点还没有确定最短路  当前这个t不是最短的if (st[j] == 0 && (t == -1 || dist[t] > dist[j])) t = j;st[t] = true;for (int j = 1; j <= n; j++)dist[j] = min(dist[j],dist[t] + g[t][j]);}if ( dist[n] == 0x3f3f3f3f ) return 0;return dist[n];
}int main()
{cin >> n >> m;memset(g , 0x3f , sizeof g);//初始化/*for (int i = 1; i <= n; i++)for (int j = 0; j <= m; j++)if (i == j) g[i][j] = 0;else g[i][j] = INF;*/while (m--){int a, b, c;cin >> a >> b >> c;g[a][b] = min(g[a][b], c);// 因为a和b之间可能有多条变 只需要保留长度最短的那条边}int  t = dijkstra();cout << t << endl;return 0;
}

这篇关于Dijkstra(c++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103142

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

poj 1502 MPI Maelstrom(单源最短路dijkstra)

题目真是长得头疼,好多生词,给跪。 没啥好说的,英语大水逼。 借助字典尝试翻译了一下,水逼直译求不喷 Description: BIT他们的超级计算机最近交货了。(定语秀了一堆词汇那就省略吧再见) Valentine McKee的研究顾问Jack Swigert,要她来测试一下这个系统。 Valentine告诉Swigert:“因为阿波罗是一个分布式共享内存的机器,所以它的内存访问

uva 10801(乘电梯dijkstra)

题意: 给几个电梯,电梯0 ~ n-1分别可以到达很多层楼。 换乘电梯需要60s时间。 问从0层到target层最小的时间。 解析: 将进入第0层的电梯60s也算上,最后减。 坑点是如果target为0输出0。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algori

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

poj 3255 次短路(第k短路) A* + spfa 或 dijkstra

题意: 给一张无向图,求从1到n的次短路。 解析: A* + spfa 或者 dijkstra。 详解见上一题:http://blog.csdn.net/u013508213/article/details/46400189 本题,spfa中,stack超时,queue的效率最高,priority_queue次之。 代码: #include <iostream>#i