Python酷库之旅-第三方库Pandas(096)

2024-08-24 17:04

本文主要是介绍Python酷库之旅-第三方库Pandas(096),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、用法精讲

411、pandas.DataFrame.values属性

411-1、语法

411-2、参数

411-3、功能

411-4、返回值

411-5、说明

411-6、用法

411-6-1、数据准备

411-6-2、代码示例

411-6-3、结果输出

412、pandas.DataFrame.axes属性

412-1、语法

412-2、参数

412-3、功能

412-4、返回值

412-5、说明

412-6、用法

412-6-1、数据准备

412-6-2、代码示例

412-6-3、结果输出

413、pandas.DataFrame.ndim属性

413-1、语法

413-2、参数

413-3、功能

413-4、返回值

413-5、说明

413-6、用法

413-6-1、数据准备

413-6-2、代码示例

413-6-3、结果输出

414、pandas.DataFrame.size属性

414-1、语法

414-2、参数

414-3、功能

414-4、返回值

414-5、说明

414-6、用法

414-6-1、数据准备

414-6-2、代码示例

414-6-3、结果输出

415、pandas.DataFrame.shape属性

415-1、语法

415-2、参数

415-3、功能

415-4、返回值

415-5、说明

415-6、用法

415-6-1、数据准备

415-6-2、代码示例

415-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

411、pandas.DataFrame.values属性
411-1、语法
# 411、pandas.DataFrame.values属性
pandas.DataFrame.values
Return a Numpy representation of the DataFrame.WarningWe recommend using DataFrame.to_numpy() instead.Only the values in the DataFrame will be returned, the axes labels will be removed.Returns:
numpy.ndarray
The values of the DataFrame.
411-2、参数

        无

411-3、功能

        获取DataFrame中的所有数据,忽略行索引和列标签,方便进行数值计算和操作,因为返回的是NumPy数组。

411-4、返回值

        返回一个NumPy ndarray,包含DataFrame中的所有数据,该属性提供了对DataFrame内部存储数据的直接访问。

411-5、说明

411-5-1、如果DataFrame中只有一种数据类型,返回的数组的数据类型将对应该类型,如整数或浮点数。

411-5-2、推荐使用df.to_numpy()来替代values属性,以获得更好的功能和灵活性。

411-6、用法
411-6-1、数据准备
411-6-2、代码示例
# 411、pandas.DataFrame.values属性
import pandas as pd
# 创建一个DataFrame
data = {'A': [1, 2, 3],'B': [4.5, 5.5, 6.5],'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 使用values属性
array_values = df.values
print("DataFrame的值:")
print(array_values)
411-6-3、结果输出
# 411、pandas.DataFrame.values属性
# DataFrame的值:
# [[1 4.5 'foo']
#  [2 5.5 'bar']
#  [3 6.5 'baz']]
412、pandas.DataFrame.axes属性
412-1、语法
# 412、pandas.DataFrame.axes属性
pandas.DataFrame.axes
Return a list representing the axes of the DataFrame.It has the row axis labels and column axis labels as the only members. They are returned in that order.
412-2、参数

        无

412-3、功能

        用于获取DataFrame的轴标签,返回一个包含行索引和列索引的列表。

412-4、返回值

        返回一个列表,其中包含两个元素:[index, columns]

412-5、说明

        无

412-6、用法
412-6-1、数据准备
412-6-2、代码示例
# 412、pandas.DataFrame.axes属性
import pandas as pd
# 创建一个DataFrame
data = {'A': [1, 2, 3],'B': [4.5, 5.5, 6.5],'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 使用axes属性
axes = df.axes
print("DataFrame的轴标签:")
print("行索引:", axes[0])
print("列索引:", axes[1])
412-6-3、结果输出
# 412、pandas.DataFrame.axes属性
# DataFrame的轴标签:
# 行索引: RangeIndex(start=0, stop=3, step=1)
# 列索引: Index(['A', 'B', 'C'], dtype='object')
413、pandas.DataFrame.ndim属性
413-1、语法
# 413、pandas.DataFrame.ndim属性
pandas.DataFrame.ndim
Return an int representing the number of axes / array dimensions.Return 1 if Series. Otherwise return 2 if DataFrame.
413-2、参数

        无

413-3、功能

        用于获取DataFrame的维度。

413-4、返回值

        返回一个整数,表示数据的维度级别。

413-5、说明

        无

413-6、用法
413-6-1、数据准备
413-6-2、代码示例
# 413、pandas.DataFrame.ndim属性
import pandas as pd
# 创建一个DataFrame
data = {'A': [1, 2, 3],'B': [4.5, 5.5, 6.5],'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的维度
dimensions = df.ndim
print("DataFrame的维度:", dimensions)
413-6-3、结果输出
# 413、pandas.DataFrame.ndim属性
# DataFrame的维度: 2
414、pandas.DataFrame.size属性
414-1、语法
# 414、pandas.DataFrame.size属性
pandas.DataFrame.size
Return an int representing the number of elements in this object.Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame.
414-2、参数

        无

414-3、功能

        用于获取DataFrame中所有元素的总数。

414-4、返回值

        返回一个整数,表示DataFrame中的行数与列数的乘积。

414-5、说明

        无

414-6、用法
414-6-1、数据准备
414-6-2、代码示例
# 414、pandas.DataFrame.size属性
import pandas as pd
# 创建一个DataFrame
data = {'A': [1, 2, 3],'B': [4.5, 5.5, 6.5],'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的大小
total_elements = df.size
print("DataFrame的总元素数:", total_elements)
414-6-3、结果输出
# 414、pandas.DataFrame.size属性
# DataFrame的总元素数: 9
415、pandas.DataFrame.shape属性
415-1、语法
# 415、pandas.DataFrame.shape属性
pandas.DataFrame.shape
Return a tuple representing the dimensionality of the DataFrame.
415-2、参数

        无

415-3、功能

        用于获取DataFrame的维度信息。

415-4、返回值

        返回一个元组,其中包含行数和列数。

415-5、说明

        无

415-6、用法
415-6-1、数据准备
415-6-2、代码示例
# 415、pandas.DataFrame.shape属性
import pandas as pd
# 创建一个DataFrame
data = {'A': [1, 2, 3],'B': [4.5, 5.5, 6.5],'C': ['foo', 'bar', 'baz']
}
df = pd.DataFrame(data)
# 获取DataFrame的维度
dimensions = df.shape
print("DataFrame的维度:", dimensions)
415-6-3、结果输出
# 415、pandas.DataFrame.shape属性
# DataFrame的维度: (3, 3)

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

这篇关于Python酷库之旅-第三方库Pandas(096)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103078

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写