Groupings sets详解

2024-08-24 05:44
文章标签 详解 sets groupings

本文主要是介绍Groupings sets详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 概要
  • 使用方法介绍
  • 示例

概要

GROUPING SETS在SELECT语句中的使用,它扩展了GROUP BY的功能,允许一次性执行多种分组操作,提高了查询效率。hive,spark,presto中都有此函数。以下介绍以sparksql为例;

使用方法介绍

首先需要提醒一点的是,hql中和sparksql中虽然均有grouping sets函数,可是grouping__id顺序确是相反的,一般情况我们习惯了hql中保持一致,需要脚本中增加:set spark.grouping.sets.reference.hive=true;

基本使用,是在group by 维度值后,使用grouping sets ((a,b,c),(a,b),©)像这样;

SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b GROUPING SETS ( (a,b), a)
###等价于
SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b
UNION
SELECT a, null, SUM( c ) FROM tab1 GROUP BY a

示例

有这样一份数据,统计了不同维度下用户数和浏览次数,维度有日期(day),平台(platform)和频道(channel);

具体代码如下:

select day,platform,channel,sum(pv) as pv,sum(imei_num) as imei_num
from 
(SELECT  day,if((cast(grouping__id as int) & 1) = 0,'ALL',platform) as platform,if((cast(grouping__id as int) & 2) = 0,'ALL',channel) as channel,SUM(pv) as pv,imei,max(if(pv>0,1,0)) as imei_num
FROM tmp_read_pv
GROUP BY  platform, channel,day,imei
GROUPING SETS ( 
(platform,channel,imei,day),
(platform,imei,day),
(channel,imei,day),
(imei,day))) tt GROUP BY  platform, channel,day;

一般情况下,涉及到人数去重,我们习惯于嵌套两层,最里面一层加上imei维度,最外面再把imei去掉;

现在思考一个问题,如果我们维度比较多,比如有8个维度,里面还涉及到去重指标,我们该怎么做呢?如果直接使用grouping sets
再加上imei,共有9个维度,直接写需要 2 9 2^9 29行,如果直接用with cube,因为里面有imei数据量比较大,几乎跑不动。那该如何呢?

方法:多段使用grouping sets ,比如你有9个(加imei)维度,你可以第一次先group by 5个(加imei)维度,其他几个维度当做指标
,此时4个维度,都有all枚举值,第二次使用grouping sets ,group by 两个维度,再加上第一次的5个,剩下两个依然当做指标,grouping sets里面需要注意一下,这4个维度不用再增加ALL枚举值,此时这两个维度也有all枚举值,最后一次再新增两个维度,group by 两个维度,再加上前两次的7个维度,注意事项同上,此时最后两个维度也有ALL枚举值。在最后把imei维度去掉再聚合一层,就能得出最终结果;

这篇关于Groupings sets详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101610

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Java中八大包装类举例详解(通俗易懂)

《Java中八大包装类举例详解(通俗易懂)》:本文主要介绍Java中的包装类,包括它们的作用、特点、用途以及如何进行装箱和拆箱,包装类还提供了许多实用方法,如转换、获取基本类型值、比较和类型检测,... 目录一、包装类(Wrapper Class)1、简要介绍2、包装类特点3、包装类用途二、装箱和拆箱1、装