C++ CF862B Mahmoud and Ehab and the bipartiteness

2024-08-23 16:18

本文主要是介绍C++ CF862B Mahmoud and Ehab and the bipartiteness,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意翻译

给出n个点,n-1条边,求再最多再添加多少边使得二分图的性质成立

By @partychicken

(为了尽量更清晰的说明题意,以下为个人附加的内容)

就像这样(黑边为原本就有的边,红色边的数量为需要求出的解):

图片来自:https://www.luogu.org/blog/ACdreamer/solution-cf862b

输入输出样例

输入样例1:

3
1 2
1 3

输出样例1:

0

输入样例2:

5
1 2
2 3
3 4
4 5

输出样例2:

2

题目链接: https://www.luogu.org/problemnew/show/CF862B


个人思路:

  • 看起来是个二分图染色的裸题,就可以向二分图染色的方向进行一些考虑.
  • 由于数据不保证给定的图是联通图,所以要准备到图不是联通图的可能。因此,我们要增加一个vis数组(用于判断某个点是否被访问过),并对每个点进行BFS.
  • 由题意可知:对于我们要求的结果来说,结果所代表的理想的图的每一个点,都连接着另一颜色的点集的所有点。根据乘法原理和我们推理所得到的结论,可以得出这样一个事实:对于结果我们想要推理出的图来说,她的边的数量为一种颜色的点的数量*另一种颜色的点的数量.
  • 因为我们要求得的结果为:最多需要再添加的边的数量 因此,我们只需要将求得的边的总数量再减去图中一开始就有的边的数量即可。
  • 由此,可得最终结果为:最少(之所以说"最少"是因为给定图可能不是联通图)的一种点的数量*另一种点的数量-n+1.

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
const int N=200005,M=200005;
long long n,m,cnt=0,head[N],cl[N],vis[N],ansA=0;
struct Edge{int v,w,nxt;
}e[M];
void addEdge(int u,int v,int w){e[++cnt].v=v;e[cnt].w=w;e[cnt].nxt=head[u];head[u]=cnt;
}
long long ans[2]{0,0};
int bfs(int x){queue<int> q;q.push(x);while(!q.empty()){int nowValue=q.front();q.pop();for(int i=head[nowValue];i;i=e[i].nxt){int nowV=e[i].v;if(cl[nowV]==-1){//cout<<"nowV:"<<nowV<<endl;//cout<<"cl[nowValue]="<<cl[nowValue]<<endl;cl[nowV]=cl[nowValue]^1;//cout<<"cl["<<nowV<<"]="<<cl[nowV]<<endl;ans[cl[nowV]]++;q.push(nowV);}if(cl[nowV]==cl[nowValue]){return -1;}}}//cout<<"ans[0]:"<<ans[0]<<",ans[1]:"<<ans[1]<<endl;return min(ans[0],ans[1]);
}
int main(){memset(cl,-1,sizeof(cl));scanf("%d",&n);m=n-1;for(int i=1;i<=m;i++){int ta,tb;scanf("%d%d",&ta,&tb);addEdge(ta,tb,1);addEdge(tb,ta,1);}for(int i=1;i<=n;i++){if(cl[i]==-1){cl[i]=1;ans[1]++;//cout<<"bfs:"<<i<<endl;int tempAns=bfs(i);ansA+=ans[0]*ans[1]-n+1;memset(ans,0,sizeof(ans));}}printf("%lld\n",ansA);return 0;
}

 

这篇关于C++ CF862B Mahmoud and Ehab and the bipartiteness的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099875

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝