二维偏序——常见问题解答

2024-08-23 16:08

本文主要是介绍二维偏序——常见问题解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、定义

  • 对于每个点i,都可能有另外一些点的x、y坐标均小于等于点i的x、y坐标,这些点的数量即为点i的二维偏序值.
  • 在图1中,点A的二维偏序值为1,B的二维偏序值为2,点C的二维偏序值为0.
  • 图1
  • 在图2中,点A与点B的二维偏序值均为0.
  • 图2

二、具体过程

  • 很多地方都会直接告诉我们:按照第一维排序,再用树状数组处理第二维即可。但是最重要的并不是具体的运行步骤,而是这个方法里真正蕴含的算法设计的思想.
  • 为什么要按照第一维排序:对于每个点,显然只有它前面的点(x坐标小于等于该点)的数量有可能(换句话说,x坐标大于该点的那些点是绝对不可能被计入该点的二维偏序值的)被计入该点的二维偏序值.
  • 当然了,仅仅按照第一维排序是不能解决这一问题的,因为不能保证每个点前面的点的y坐标都小于等于这个点。换句话说,假设点i前面的某个点的y坐标大于点i的y坐标,那就不应当计入点i的二维偏序值.
  • 例如图3,该图中点A、B、C的二维偏序值均为0.
  • 图3

     

  • 为什么要使用树状数组:在二维偏序中,通过对每个点关于x坐标排序,我们得到了一个x轴坐标单调递增的点的序列。接下来要解决的问题,是怎么关于点i获取y坐标小于点i的点的数量。由于只有x坐标小于等于点i的点集需要被考虑(原因前面已经提到过,即只有x坐标小于等于点i的x坐标的点集有可能被计入点i的二维偏序值),
  • 我们可以从开头到末尾遍历已关于x轴排序每个点,每遍历到一个点,就将这个点的y坐标添加到树状数组中。这样,对于点i,只需要在树状数组中查询y坐标小于等于点i的y坐标的点的数量,即可获取该点的二维偏序值。在具体理解中,我们可以理解为树状数组在其中起到的作用类似一个垂直于y轴的"挡板"(如图4)。换句话说,这里使用的树状数组实际上是关于各个点的y坐标值的,这一点类似值域线段树.
  • 图4
  • 类似地,关于x轴的排序也可以理解为垂直于x轴的"挡板"(图5)(只画出了一部分以便于理解)

  • 图5

     

  • 由此可知,该二维偏序算法的正确性是由按照时间顺序(实际是x坐标的升序)不断向树状数组加点(实际只加了y坐标)保证的.

 


 代码如下(未经过严格测试):

#include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
const int MAXN=1000010;
int maxValue,tr[MAXN];
int lowbit(int x){return x&-x;
}
void add(int x,int k){for(int i=x;i<=maxValue;i+=lowbit(i)){tr[i]+=k;}
}
int sum(int l,int r){int ans=0;for(int i=r;i>0;i-=lowbit(i)){ans+=tr[i];}for(int i=l-1;i>0;i-=lowbit(i)){ans-=tr[i];}return ans;
}
struct Point{int a,b;bool operator <(const Point &another)const{return another.a<a;}
};
int pointCnt=0;
int main(){int n;scanf("%d%d",&n,&maxValue);priority_queue<Point> q;for(int i=1;i<=n;i++){int tmpA,tmpB;scanf("%d%d",&tmpA,&tmpB);Point tmp=Point{tmpA,tmpB};q.push(tmp);}while(!q.empty()){Point nowPoint=q.top();q.pop();int nowValue=nowPoint.b;cout<<sum(1,nowValue)<<endl;add(nowValue,1);}return 0;
}

 

这篇关于二维偏序——常见问题解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099854

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

MySQL常见的存储引擎和区别说明

《MySQL常见的存储引擎和区别说明》MySQL支持多种存储引擎,如InnoDB、MyISAM、MEMORY、Archive、CSV和Blackhole,每种引擎有其特点和适用场景,选择存储引擎时需根... 目录mysql常见的存储引擎和区别说明1. InnoDB2. MyISAM3. MEMORY4. A

前端bug调试的方法技巧及常见错误

《前端bug调试的方法技巧及常见错误》:本文主要介绍编程中常见的报错和Bug,以及调试的重要性,调试的基本流程是通过缩小范围来定位问题,并给出了推测法、删除代码法、console调试和debugg... 目录调试基本流程调试方法排查bug的两大技巧如何看控制台报错前端常见错误取值调用报错资源引入错误解析错误

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I