本文主要是介绍Python案例 | Kriging预测钢筋混凝土梁长期挠度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
前言
Kriging是一种基于高斯过程建模的代理模型,也称为高斯过程回归,是一种用于空间插值和预测的统计方法。最早由丹尼斯·克里金在地质学中提出,通过已知数据点来预测未知点的值,适用于具有空间相关性的情况。
Kriging用于回归问题,具体原理的解释可参考SMT工具箱[1]或在微信公众号、CSDN和B站等网站检索学习。
笔者认为,对于代理模型/机器学习算法理论的学习应配合具体案例代码。因此,本文将通过一个钢筋混凝土梁长期挠度预测实验数据集,使用python来展示Kriging的回归建模效果。
1. 数据来源
本文所采用的钢筋混凝土梁长期挠度数据集来源于之前在世界各地进行的实验工作中收集的包含217个测试的数据集。详细的数据库由Espion[2]从29个不同的研究计划中总结和记录。
下表给出所使用数据的变量名称和统计描述
需要该数据集可关注公众号“UQLearner”,后台回复“Espion”获取。
数据收集不易,如果对您发表文章有用,还请引用文章:
Dan, W.; Yue, X.; Yu, M.; Li, T.; Zhang, J. Prediction and Global Sensitivity Analysis of Long-Term Deflections in Reinforced Concrete Flexural Structures Using Surrogate Models. Materials 2023, 16 (13), 4671. https://doi.org/10.3390/ma16134671.
2. Python代码实现
# 使用Kriging预测钢筋混凝土梁长期挠度
# Edit by Yue
# 2024.8.22
###################### 1. 导入必要的第三方库库 ######################
import numpy as np
import matplotlib
matplotlib.use('TkAgg') # 用于指定matplotlib使用TkAgg后端进行图形渲染。TkAgg是matplotib的一个后端,它使用Tkinter库来创建图形窗口并显示图表。
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
import pandas as pd
from smt.surrogate_models import KRG
###################### 2. 读取钢筋混凝土梁长期挠度数据 ######################
Data = pd.read_excel('Long-Term Deflection of Reinforced Concrete Beams_New.xlsx') # 读取钢筋混凝土梁长期挠度数据
#print(Data.describe()) # 输出数据的统计信息,包括计数、平均值、标准差、最小值、最大值、中位数、25%的分位数和75%的分位数。
pd.set_option('display.max_columns', None) # 设置显示数据的所有列
#print(Data) # 打印显示所有的列的数据
#print(Data.head()) # 显示数据的前5行###################### 3. 数据预处理 ######################
X = Data.drop(columns=['X2', 'Y']) # 删除输出列
features = X.columns # 将X每个变量的每个变量名提取出来,用于后续的特征重要性分析
X = preprocessing.scale(X) # 进行标准化处理
y = Data['Y'] # 模型输出为数据中的“Y”列###################### 4. 数据集划分 ######################
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=50) # 划分训练集和测试集
y_train = y_train.to_numpy() # 将Series对象转换为numpy数组
y_test = y_test.to_numpy() # 转不转换都行
print(type(y_train)) ## 4. 模型训练
sm = KRG(theta0=[1e-2])
sm.set_training_values(X_train, y_train)
sm.train()###################### 5. 模型评估 ######################
y_train_pred = sm.predict_values(X_train) # 预测输出
y_test_pred = sm.predict_values(X_test) # 预测输出# 训练集均方根误差
RMSE_train = np.sqrt(mean_squared_error(y_train, y_train_pred))
print(f'训练集RMSE:{RMSE_train: .4f}') # 打印输出RMSE值
# 训练集决定系数R2
R2_train =r2_score(y_train, y_train_pred)
print(f'训练集R2:{R2_train: .4f}') # 打印输出R2值# 测试集均方根误差
RMSE_test = np.sqrt(mean_squared_error(y_test, y_test_pred))
print(f'测试集RMSE:{RMSE_test: .4f}') # 打印输出RMSE值
# 测试集决定系数R2
R2_test =r2_score(y_test, y_test_pred)
print(f'测试集R2:{R2_test: .4f}') # 打印输出R2值###################### 6. 可视化实际值与预测值的关系 ######################
plt.subplot(1, 2, 1)
plt.scatter(y_train, y_train_pred, alpha=0.3, label='Kriging') # Kriging与真实值的比较
plt.plot([y_train.min(), y_train.max()], [y_train.min(), y_train.max()], 'r--', lw=2, label='Best Line of Fit') # 最优拟合线
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title(f'Actual vs Predicted \nR2_train: {R2_train: .4f}')
plt.legend()plt.subplot(1, 2, 2)
plt.scatter(y_test, y_test_pred, alpha=0.3, label='Kriging') # Kriging与真实值的比较
plt.plot([y_test_pred.min(), y_test_pred.max()], [y_test_pred.min(), y_test_pred.max()], 'r--', lw=2, label='Best Line of Fit') # 最优拟合线
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title(f'Actual vs Predicted \nR2_test: {R2_test: .4f}')
plt.legend()plt.tight_layout() # 自动调整图形的布局,确保元素如坐标轴标签、刻度和标题不会重叠
plt.show() # 显示图像
3. 结果展示
从上图展示的结果来看,Kriging可用于钢筋混凝土梁长期挠度的预测。
参考文献
[1] https://smt.readthedocs.io/en/latest/_src_docs/surrogate_models/gpr/krg.html)
[2] Espion B (1988a) Long term sustained loading tests on reinforced concrete beams. Bull Serv Génie Civil
这篇关于Python案例 | Kriging预测钢筋混凝土梁长期挠度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!