Python案例 | Kriging预测钢筋混凝土梁长期挠度

2024-08-23 03:44

本文主要是介绍Python案例 | Kriging预测钢筋混凝土梁长期挠度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

Kriging是一种基于高斯过程建模的代理模型,也称为高斯过程回归,是一种用于空间插值和预测的统计方法。最早由丹尼斯·克里金在地质学中提出,通过已知数据点来预测未知点的值,适用于具有空间相关性的情况。

Kriging用于回归问题,具体原理的解释可参考SMT工具箱[1]或在微信公众号、CSDN和B站等网站检索学习。

笔者认为,对于代理模型/机器学习算法理论的学习应配合具体案例代码。因此,本文将通过一个钢筋混凝土梁长期挠度预测实验数据集,使用python来展示Kriging的回归建模效果。

1. 数据来源

本文所采用的钢筋混凝土梁长期挠度数据集来源于之前在世界各地进行的实验工作中收集的包含217个测试的数据集。详细的数据库由Espion[2]从29个不同的研究计划中总结和记录。

下表给出所使用数据的变量名称和统计描述

需要该数据集可关注公众号“UQLearner”,后台回复“Espion”获取。

在这里插入图片描述

数据收集不易,如果对您发表文章有用,还请引用文章:

Dan, W.; Yue, X.; Yu, M.; Li, T.; Zhang, J. Prediction and Global Sensitivity Analysis of Long-Term Deflections in Reinforced Concrete Flexural Structures Using Surrogate Models. Materials 2023, 16 (13), 4671. https://doi.org/10.3390/ma16134671.

2. Python代码实现

# 使用Kriging预测钢筋混凝土梁长期挠度
# Edit by Yue
# 2024.8.22
###################### 1. 导入必要的第三方库库 ######################
import numpy as np
import matplotlib
matplotlib.use('TkAgg') # 用于指定matplotlib使用TkAgg后端进行图形渲染。TkAgg是matplotib的一个后端,它使用Tkinter库来创建图形窗口并显示图表。
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
import pandas as pd
from smt.surrogate_models import KRG
###################### 2. 读取钢筋混凝土梁长期挠度数据 ######################
Data = pd.read_excel('Long-Term Deflection of Reinforced Concrete Beams_New.xlsx')  # 读取钢筋混凝土梁长期挠度数据
#print(Data.describe())                       # 输出数据的统计信息,包括计数、平均值、标准差、最小值、最大值、中位数、25%的分位数和75%的分位数。
pd.set_option('display.max_columns', None)   # 设置显示数据的所有列
#print(Data)         # 打印显示所有的列的数据
#print(Data.head())  # 显示数据的前5行###################### 3. 数据预处理 ######################
X = Data.drop(columns=['X2', 'Y'])  # 删除输出列
features = X.columns                # 将X每个变量的每个变量名提取出来,用于后续的特征重要性分析
X = preprocessing.scale(X)          # 进行标准化处理
y = Data['Y']                       # 模型输出为数据中的“Y”列###################### 4. 数据集划分 ######################
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=50)  # 划分训练集和测试集
y_train = y_train.to_numpy()   # 将Series对象转换为numpy数组
y_test = y_test.to_numpy()   # 转不转换都行
print(type(y_train))  ## 4. 模型训练
sm = KRG(theta0=[1e-2])
sm.set_training_values(X_train, y_train)
sm.train()###################### 5. 模型评估 ######################
y_train_pred = sm.predict_values(X_train)  # 预测输出
y_test_pred = sm.predict_values(X_test)  # 预测输出# 训练集均方根误差
RMSE_train = np.sqrt(mean_squared_error(y_train, y_train_pred))
print(f'训练集RMSE:{RMSE_train: .4f}')    # 打印输出RMSE值
# 训练集决定系数R2
R2_train =r2_score(y_train, y_train_pred)
print(f'训练集R2:{R2_train: .4f}')        # 打印输出R2值# 测试集均方根误差
RMSE_test = np.sqrt(mean_squared_error(y_test, y_test_pred))
print(f'测试集RMSE:{RMSE_test: .4f}')    # 打印输出RMSE值
# 测试集决定系数R2
R2_test =r2_score(y_test, y_test_pred)
print(f'测试集R2:{R2_test: .4f}')        # 打印输出R2值###################### 6. 可视化实际值与预测值的关系 ######################
plt.subplot(1, 2, 1)
plt.scatter(y_train, y_train_pred, alpha=0.3, label='Kriging')   # Kriging与真实值的比较
plt.plot([y_train.min(), y_train.max()], [y_train.min(), y_train.max()], 'r--', lw=2, label='Best Line of Fit') # 最优拟合线
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title(f'Actual vs Predicted \nR2_train: {R2_train: .4f}')
plt.legend()plt.subplot(1, 2, 2)
plt.scatter(y_test, y_test_pred, alpha=0.3, label='Kriging')          # Kriging与真实值的比较
plt.plot([y_test_pred.min(), y_test_pred.max()], [y_test_pred.min(), y_test_pred.max()], 'r--', lw=2, label='Best Line of Fit') # 最优拟合线
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title(f'Actual vs Predicted \nR2_test: {R2_test: .4f}')
plt.legend()plt.tight_layout()  # 自动调整图形的布局,确保元素如坐标轴标签、刻度和标题不会重叠
plt.show()          # 显示图像

3. 结果展示

从上图展示的结果来看,Kriging可用于钢筋混凝土梁长期挠度的预测。

参考文献

[1] https://smt.readthedocs.io/en/latest/_src_docs/surrogate_models/gpr/krg.html)

[2] Espion B (1988a) Long term sustained loading tests on reinforced concrete beams. Bull Serv Génie Civil

这篇关于Python案例 | Kriging预测钢筋混凝土梁长期挠度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1098256

相关文章

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp