力扣221题详解:最大正方形的多种解法与模拟面试问答

2024-08-22 20:12

本文主要是介绍力扣221题详解:最大正方形的多种解法与模拟面试问答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本篇文章中,我们将详细解读力扣第221题“最大正方形”。通过学习本篇文章,读者将掌握如何使用多种方法来解决这一问题,并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释,以便于理解。

问题描述

力扣第221题“最大正方形”描述如下:

在一个由 '0''1' 组成的二维矩阵中,找到只包含 '1' 的最大正方形,并返回其面积。

示例:

输入: matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]
]
输出: 4

示例:

输入: matrix = [["0","1"],["1","0"]
]
输出: 1

解题思路

方法一:动态规划
  1. 初步分析

    • 使用动态规划来记录每个位置的最大正方形边长,最后返回最大边长的平方作为面积。
  2. 步骤

    • 定义一个二维数组 dpdp[i][j] 表示以 matrix[i][j] 为右下角的最大正方形的边长。
    • 动态转移方程:如果 matrix[i][j] == '1',那么 dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1
    • 遍历整个矩阵,更新 dp 数组,同时记录最大的边长。
代码实现
def maximalSquare(matrix):if not matrix or not matrix[0]:return 0m, n = len(matrix), len(matrix[0])dp = [[0] * n for _ in range(m)]max_side = 0for i in range(m):for j in range(n):if matrix[i][j] == '1':if i == 0 or j == 0:dp[i][j] = 1else:dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1max_side = max(max_side, dp[i][j])return max_side * max_side# 测试案例
print(maximalSquare([["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]
]))  # 输出: 4print(maximalSquare([["0","1"],["1","0"]
]))  # 输出: 1
方法二:优化的动态规划(空间优化)
  1. 初步分析

    • 可以将二维的 dp 数组压缩为一维数组,减少空间复杂度。
  2. 步骤

    • 使用一个一维数组 dp 来记录当前行的最大正方形边长,结合一个额外变量 prev 来保存左上角的值。
代码实现
def maximalSquare(matrix):if not matrix or not matrix[0]:return 0m, n = len(matrix), len(matrix[0])dp = [0] * nmax_side = 0prev = 0for i in range(m):for j in range(n):temp = dp[j]if matrix[i][j] == '1':if j == 0:dp[j] = 1else:dp[j] = min(dp[j], dp[j-1], prev) + 1max_side = max(max_side, dp[j])else:dp[j] = 0prev = tempreturn max_side * max_side# 测试案例
print(maximalSquare([["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]
]))  # 输出: 4print(maximalSquare([["0","1"],["1","0"]
]))  # 输出: 1

复杂度分析

  • 时间复杂度:O(m * n),其中 m 和 n 分别是矩阵的行数和列数。需要遍历整个矩阵以更新 dp 数组。
  • 空间复杂度
    • 二维动态规划:O(m * n),用于存储 dp 数组。
    • 优化的动态规划:O(n),一维数组的大小为矩阵的列数。

模拟面试问答

问题 1:你能描述一下如何解决这个问题的思路吗?

回答:我们可以使用动态规划来解决这个问题。通过定义一个 dp 数组,记录以每个位置为右下角的最大正方形的边长。遍历矩阵,更新 dp 数组,并记录最大的边长,最后返回其平方作为面积。

问题 2:为什么选择使用动态规划来解决这个问题?

回答:动态规划是一种高效处理二维矩阵问题的技术,通过记录子问题的最优解,可以快速计算出全局最优解。在本题中,通过定义 dp 数组并更新每个位置的最大正方形边长,可以在 O(m * n) 的时间复杂度内解决问题,适合处理较大规模的矩阵。

问题 3:你的算法的时间复杂度和空间复杂度是多少?

回答:算法的时间复杂度是 O(m * n),其中 m 和 n 分别是矩阵的行数和列数。空间复杂度有两种情况:如果使用二维动态规划,空间复杂度为 O(m * n);如果进行空间优化,使用一维动态规划,空间复杂度可以降低到 O(n)。

问题 4:在代码中如何处理边界情况?

回答:如果矩阵为空,或者矩阵的行或列为空,直接返回 0。此外,初始化 dp 数组时,第一行和第一列的值需要单独处理,因为它们无法从左上方元素推导出边长。通过这些边界处理,可以确保算法的正确性。

问题 5:你能解释一下动态规划在这个问题中的作用吗?

回答:动态规划通过记录之前计算过的最优解,避免了重复计算。具体来说,通过定义 dp[i][j] 表示以 matrix[i][j] 为右下角的最大正方形的边长,可以根据左上、上、左三个方向的最优解快速计算出当前点的最优解,最终得出整个矩阵的最大正方形的面积。

问题 6:在代码中如何确保返回的结果是正确的?

回答:通过遍历整个矩阵并更新 dp 数组,确保每个位置的最大正方形边长都被正确计算。通过记录过程中出现的最大边长,最后返回最大边长的平方作为结果。这个过程保证了结果的正确性。

问题 7:你能举例说明在面试中如何回答优化问题吗?

回答:在面试中,如果被问到如何优化算法,我会先解释当前算法的瓶颈,比如空间复杂度。然后可以提出空间优化方案,比如将二维 dp 数组压缩为一维,降低空间复杂度。最后,通过代码实现并分析优化后的算法,解释其优缺点。

问题 8:如何验证代码的正确性?

回答:通过运行多组测试用例验证代码的正确性,特别是边界情况的测试,如矩阵为空、矩阵只有一行或一列的情况。确保每个测试用例的结果都符合预期,且算法能在规定的时间内完成计算。此外,还可以通过手工推演一些简单的例子来验证代码逻辑。

问题 9:你能解释一下解决“最大正方形”问题的重要性吗?

回答:解决“最大正方形”问题在计算机视觉、图像处理等领域具有广泛的应用。例如,在处理二值图像时,识别最大面积的目标区域是一个常见的需求。通过学习这个问题,可以帮助我们理解如何在二维矩阵中高效处理动态规划问题,提高解决类似问题的能力。

问题 10:在处理大数据集时,算法的性能如何?

回答:算法的性能主要取决于矩阵的行数 m 和列数 n。使用动态规划可以保证在 O(m * n) 的时间复杂度内解决问题,而通过空间优化可以将空间复杂度从 O(m * n) 降低到 O(n),在处理大规模数据时具有较好的性能表现。

总结

本文详细解读了力扣第221题“最大正方形”,通过使用动态规划和空间优化的动态规划方法高效地解决了这一问题,并提供了详细的解释和模拟面试问答。希望读者通过本文的学习,能够在力扣刷题的过程中更加得心应手。

这篇关于力扣221题详解:最大正方形的多种解法与模拟面试问答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097283

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

usaco 1.2 Transformations(模拟)

我的做法就是一个一个情况枚举出来 注意计算公式: ( 变换后的矩阵记为C) 顺时针旋转90°:C[i] [j]=A[n-j-1] [i] (旋转180°和270° 可以多转几个九十度来推) 对称:C[i] [n-j-1]=A[i] [j] 代码有点长 。。。 /*ID: who jayLANG: C++TASK: transform*/#include<

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c