numpy1.1.7版本后随机数新的生成方法总结

2024-08-22 17:58

本文主要是介绍numpy1.1.7版本后随机数新的生成方法总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

      • 一、简介
      • 二、Generator
        • 1、常用函数
        • 2、示例
          • 2.1 产生随机整数
          • 2.2 产生随机数
          • 2.3 在已有的一维数组里面挑选随机数
        • 3、seed
      • 三、RandomState
      • 四、使用体验

一、简介

最近在看numpy官网的时候,发现1.17版本对随机数做了部分改动。官网地址:Random sampling (numpy.random)

改动如下:
在这里插入图片描述
numpy新版本保持了RandomState的兼容,新的Generator相比于RandomState能力更强大。

在这里插入图片描述
所以有时候我们去网上找博客,不一定能获得最新的内容。

二、Generator

官网地址:Random Generator

我一开始去官网找的时候,也是再三确认,有新的方法了

1、常用函数

Generator常用的产生随机数的函数如下:
在这里插入图片描述

2、示例

常用的是前三个,我们一个一个说过去。

2.1 产生随机整数
random.Generator.integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

参数:

  • low:int or array-like of ints,确定随机数的下限,必须给出;如果high没有指定,假如参数是low=3,那么就把3赋值给high,随机数在[0,3)里面选;如果只有一个参数,且给出的时候没有指定给哪low还是high,则默认给high,并且此时low默认为0;
  • high:int or array-like of ints, optional,确定随机数的上限;
  • size:int or tuple of ints, optional,确定返回的矩阵大小,可以是一维,也可以是多维;
  • dtype:dtype, optional,确定整数类型;
  • endpoint:bool, optional,确定上下限是否包含high,默认是不包含;

示例:

>>> import numpy as np
#初始化Generator
>>> rng=np.random.default_rng()
>>> rng.integers(low=-2,high=2,size=(2,3),endpoint=True)
array([[ 1,  0,  0],[ 1,  2, -1]])
>>> rng.integers(low=3,size=5)
array([0, 1, 2, 0, 0])
>>> rng.integers(3,size=(2,3))
array([[2, 0, 1],[1, 1, 2]])
>>> rng.integers(low=3)
0
>>> rng.integers(low=3)
2
#high是数组的情况,返回值是一个有不同上限的1*3的矩阵,
>>> rng.integers(1,[3,5,10])
array([1, 2, 8])
#low是数组的情况,指定下限
>>> rng.integers([3,5,10],11)
array([ 3, 10, 10])
>>> 
2.2 产生随机数
random.Generator.random(size=None, dtype=np.float64, out=None)

参数比较少,size和dtype不再赘述,out用于指定存放结果的数组。random只能产生[0,1)之间的随机数,其它范围的得利用加减乘除等运算得到想要的结果了。

比如,想要[a,b)之间的随机数,可以如下操作:

(b - a) * random() + a

示例:

#产生[0,1)之间的随机数
>>> rng.random(size=4)
array([0.98110911, 0.18213644, 0.41812857, 0.19352714])
#产生[0,5)之间的随机数
>>> 5*rng.random(size=4)
array([1.07804164, 3.67840157, 3.8162768 , 2.13327948])
>>> 
2.3 在已有的一维数组里面挑选随机数
random.Generator.choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

参数如下:

  • a:{array_like, int},如果是数组(不仅限于一维数组),就在数组元素里面选;如果是int整数,就在np.arange(a)产生的数组里面选;
  • replace:bool, optional,是不是有放回采样,即产生的数组里面是不是有重复值;True表示有重复值,False表示没有重复值;
  • p:1-D array_like, optional,a中每个值被选上的可能性;如果没有给出,默认是均匀分布;
  • asix:int, optional,这个主要是针对a的,如果a是多维数组,选定在哪个维度上选取元素,假如a是2*4矩阵,axis=0表示每一行作为被挑选的元素;axis=1表示每一列作为被挑选的元素;
  • shuffle:bool, optional,如果是无放回抽样,是否打乱顺序。

示例:

>>> rng.choice(25,size=(2,4),replace=True)
array([[ 0, 11, 18, 11],[ 3, 18, 20, 22]])
>>> rng.choice(25,size=(2,4),replace=False)
array([[ 1, 14,  7, 23],[20,  9,  6, 19]])
>>> 

关于概率p,之前在一篇博客中,看到过这么一个应用,用choice实现了类似轮盘赌的效果,在遗传算法里面需要根据适应度选择交叉和变异的双亲节点,轮盘赌就是想实现适应度越高,被选上的可能性越大,choice函数中的p参数刚好符合。

简单实例:

>>> fitness=rng.random(size=6)
#适应度
>>> fitness
array([0.31172348, 0.21873388, 0.38370583, 0.29026004, 0.39245999,0.33158675])
>>> p=fitness/fitness.sum()
>>> p
array([0.1616429 , 0.11342354, 0.19896904, 0.15051312, 0.20350848,0.17194292])
>>> result=rng.choice(a=6,size=4,replace=False)
#result保存的是下标
>>> result
array([2, 4, 5, 3])
>>> 
3、seed

和RandomState一样,seed是用于产生相同的随机数,在Generator中需要实例化的时候就指定,暂时还没遇到这种情境下的应用。

代码:

>>> rng=np.random.default_rng(seed=10)
>>> rng.random()
0.9560017096289753
>>> rng=np.random.default_rng(seed=10)
>>> rng.random()
0.9560017096289753
>>> 

三、RandomState

这是RandomState和Generator两个类下的常用函数对比

在这里插入图片描述
RandomState官网介绍:Legacy Random Generation

这是常用的几个函数:
在这里插入图片描述
用法与Generator这个类差不多,要是觉得英文的不想看,也可以看看这篇博客Python的numpy库中rand(),randn(),randint(),random_integers()等random系函数的使用

四、使用体验

Generator函数更少,个人更喜欢新版的,反正都支持,看个人习惯。

这篇关于numpy1.1.7版本后随机数新的生成方法总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096988

相关文章

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

JavaScript DOM操作与事件处理方法

《JavaScriptDOM操作与事件处理方法》本文通过一系列代码片段,详细介绍了如何使用JavaScript进行DOM操作、事件处理、属性操作、内容操作、尺寸和位置获取,以及实现简单的动画效果,涵... 目录前言1. 类名操作代码片段代码解析2. 属性操作代码片段代码解析3. 内容操作代码片段代码解析4.

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用