【具体数学 Concrete Mathematics】1.1 递归问题 讲义

2024-08-22 13:20

本文主要是介绍【具体数学 Concrete Mathematics】1.1 递归问题 讲义,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【具体数学 Concrete Mathematics】1.1 递归问题 导入

本节(1.1、1.1.1-1.1.3)主要围绕《具体数学》第一章 递归问题(Recurrent Problems)讲义部分的三个问题展开,分别是汉诺塔、平面上的直线以及约瑟夫问题。下面简单介绍一下递归问题和数学归纳法,做一个简单的导入,具体的递归应用可以在三个例子(1.1.1-1.1.3)中获得更好的体现:

1. 递归问题:

递归问题的主要思想是将大的问题分解成小的问题,然后只要提供最小的问题的具体解决方案即可。这样实际上递归方案并没有给出原问题的具体解决方案,而是给了一个解决问题的步骤。
一个典型的例子是《线性代数》中计算行列式的值 D = ∑ j = 1 n A i j D=\sum_{j=1}^n A_{ij} D=j=1nAij。这里就是将计算 n n n维行列式 D D D分解成 n n n n − 1 n-1 n1维行列式 A i j A_{ij} Aij的计算。最后可以展开到 1 1 1维行列式 ∣ x ∣ = x |x|=x x=x。整个过程中直接计算的只有最小的问题模块—— 1 1 1维行列式,其他维度都是直接根据递归方案来计算的。
通过这个小例子我们也可以看到递归方案只有到最后一步才真正解决具体问题,此前我们都假设更小的问题答案已知,如 D = ∑ j = 1 n A i j D=\sum_{j=1}^n A_{ij} D=j=1nAij中,我们假设 A i j A_{ij} Aij都已知,但是其实 A i j A_{ij} Aij的值还需要进一步递归直到 1 1 1维行列式才能计算出具体值。
如果这个例子没能理解,请看下面三个具体的例子,然后再回来看这个小例子,相信读者会有新的理解。
DAij

2. 数学归纳法

数学归纳法是证明某个命题 P P P对所有满足 n ≥ n 0 n\ge n_0 nn0的整数 n n n都成立的一种方法。
首先我们在 n = n 0 n=n_0 n=n0时,证明 P ( n 0 ) P(n_0) P(n0)成立,这一步称为基础(Basis);
接着对于 n > n 0 n>n_0 n>n0,假设 n 0 n_0 n0 n − 1 n-1 n1之间(包含两端)的所有值都证明成立,即 P ( n 0 ) , … , P ( n − 1 ) P(n_0),\dots,P_(n-1) P(n0),,P(n1)都被证明成立,在此基础上证明 P ( n ) P(n) P(n)成立,这一步称为归纳(Induction)。
由此可以证得命题 P P P对所有满足 n ≥ n 0 n\ge n_0 nn0的整数 n n n都成立。
下面举两个例子:

例子1: 证明 P ( n ) : 1 + 2 + ⋯ + n = n ( n + 1 ) 2 P(n):1+2+\cdots+n=\frac{n(n+1)}{2} P(n):1+2++n=2n(n+1)对任意 n ≥ 1 n\ge 1 n1成立。
证明:
Basis: P ( 1 ) = 1 = 1 + 2 2 P(1)=1=\frac{1+2}{2} P(1)=1=21+2
Induction:当 n > 1 n>1 n>1时,假设 P ( n − 1 ) P(n-1) P(n1)成立,则有 P ( n − 1 ) = 1 + 2 + ⋯ + n − 1 = ( n − 1 ) n 2 P(n-1)=1+2+\cdots+n-1=\frac{(n-1)n}{2} P(n1)=1+2++n1=2(n1)n
那么 P ( n ) = 1 + 2 + ⋯ + ( n − 1 ) + n = P ( n − 1 ) + n = ( n − 1 ) n 2 + n = n ( n + 1 ) 2 P(n)=1+2+\cdots+(n-1)+n=P(n-1)+n=\frac{(n-1)n}{2}+n=\frac{n(n+1)}{2} P(n)=1+2++(n1)+n=P(n1)+n=2(n1)n+n=2n(n+1)
由此原命题得证。

例子2(习题1): 证明所有的马都是同样的颜色。
证明:假设有 n n n匹马,下面证明 P ( n ) : P(n): P(n): n n n匹马都是同样的颜色对任意 n ≥ 1 n\ge 1 n1成立。
Basis: P ( 1 ) P(1) P(1)只有1匹马,显然其与自身有相同的颜色。
Induction:当 n > 1 n>1 n>1时,假设 P ( n − 1 ) P(n-1) P(n1)成立,则有任意 n − 1 n-1 n1匹马都是相同的颜色。
那么根据归纳假设可知, 1 ∼ ( n − 1 ) 1\sim (n-1) 1(n1)号马颜色相同, 2 ∼ n 2\sim n 2n号马颜色相同,而处于中间位置标号 2 ∼ ( n − 1 ) 2\sim (n-1) 2(n1)的马在不同的马群中不可能改变颜色,因为这是马,不是变色龙。故而根据传递性可知,标号 1 ∼ n 1\sim n 1n的马颜色相同。
由此原命题得证。

例子2的证明其实是存在问题的,读者能发现吗?
这个证明绕开了2匹马的情况,因为根据归纳证明,当 n = 2 n=2 n=2时, 1 1 1 2 2 2之间不存在任何中间标号的马匹,由此可知Induction在 n = 2 n=2 n=2时不成立。

这篇关于【具体数学 Concrete Mathematics】1.1 递归问题 讲义的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096388

相关文章

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修