【JAVA多线程】CompletableFuture原理剖析

2024-08-22 10:04

本文主要是介绍【JAVA多线程】CompletableFuture原理剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前文讲解了completablefuture的使用,本文将剖析其核心原理,前文连接:

【JAVA多线程】Future,专为异步编程而生_java future异步编程-CSDN博客

目录

1.任务组成任务链

2.默认使用ForkjoinPool作为线程池

3.任务是被串行执行的


1.任务组成任务链

completablefuture最核心的两个属性:

volatile Object result;//用来存放任务的执行结果
volatile Completion stack;//用来存放接下来要执行的任务

来看看Completion长什么样子:

不难发现,它是个runnable,而且内部还包含一个next指针,这种结构是能组成链表的:

2.默认使用ForkjoinPool作为线程池

completableFuture中创建同步/异步任务的时候是可以传参传一个线程池进去的,用来作为执行这个任务的线程池。但也可以不传,不传的时候completableFuture内部默认用的ForkJoinPool来执行任务:

private static final Executor asyncPool = useCommonPool ?ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();public static CompletableFuture<Void> runAsync(Runnable runnable) {return asyncRunStage(asyncPool, runnable);
}

ForkJoinPool博主在上一篇文章里已经聊过了:

【JAVA多线程】ForkJoinPool,为高性能并行计算量身打造的线程池_forkjoinpool 并行度-CSDN博客

completableFuture之所以选ForkJoinPool来执行任务无非是看中了它的两个核心点:

  • 工作窃取(线程间的负载均衡)

  • fork join(自带对任务的同步、异步控制以保证结果的绝对正确)

ForkJoinPool.commonPool取到的是全局唯一的一个线程池,也就是说所有completableFuture的没有传参线程池的任务,用的都是同一个ForkJoinPool线程池,不同completableFuture的任务是可以并行执行的,所以ForkJoinPool的两个核心点能被完美利用起来。

3.任务是被串行执行的

可以看到不管是同步和异步都会进uniApplyStage这个方法,区别只是传参不同:

public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn) {return uniApplyStage(null, fn);
}
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn) {return uniApplyStage(asyncPool, fn);}

uniApplyStage这个方法:

private <V> CompletableFuture<V> uniApplyStage(Executor e, Function<? super T,? extends V> f) {if (f == null) throw new NullPointerException();CompletableFuture<V> d =  new CompletableFuture<V>();if (e != null || !d.uniApply(this, f, null)) {//thenApply会进uniApplyUniApply<T,V> c = new UniApply<T,V>(e, d, this, f);push(c);//thenApplyAsync直接进栈c.tryFire(SYNC);}return d;}

thenApply会进uniApply会判断一下前置任务有没有完,完了的话直接执行它,没有完的话,就return false。

final <S> boolean uniApply(CompletableFuture<S> a,Function<? super S,? extends T> f,UniApply<S,T> c) {Object r; Throwable x;if (a == null || (r = a.result) == null || f == null)//判断前置任务有没有完return false;tryComplete: if (result == null) {if (r instanceof AltResult) {if ((x = ((AltResult)r).ex) != null) {completeThrowable(x, r);break tryComplete;}r = null;}try {if (c != null && !c.claim())return false;@SuppressWarnings("unchecked") S s = (S) r;completeValue(f.apply(s));//前置任务完了的话直接执行当前任务} catch (Throwable ex) {completeThrowable(ex);}}return true;
}

总结起来就是:

同步任务先尝试一下能不能执行,不能执行就进栈。异步任务直接进栈。

这个时候我们就发现了一个问题,completable中的任务一定是被串行执行的,比如下面这种链式调用,异步任务一定是排在同步任务之后执行的,不存在异步任务会和同步任务一起执行:

 CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {System.out.println("Fetching data...");try {Thread.sleep(2000); // 模拟耗时操作} catch (InterruptedException e) {Thread.currentThread().interrupt();throw new IllegalStateException(e);}System.out.println("Data fetched.");return "Data from the network";}, executor).thenApply(data -> {System.out.println("Parsing data...");String parsedData = parseData(data);System.out.println("Data parsed.");return parsedData;}).thenApplyAsync(parsedData -> {System.out.println("Saving data to database...");saveToDatabase(parsedData);System.out.println("Data saved.");return "Data processed.";}, executor);

这里我们也发现了一个关键点,也是Completable中很容易被混淆的一点:

complateFuture中的同步和异步只是执行线程的不同,异步并不能和当前任务在同一时间并驾齐驱的被执行,也是按顺序被执行的。

这就回到上文说的,为什么默认用ForkJoinPool去作为线程池,而且全局所有CompletableFuture都公用一个线程池,就是因为只有不同completableFuture的任务才会被并行执行,ForkJoinPool的工作窃取才有意义,同一个complateFuture每个时刻都只有一个任务在执行,没有并行执行的说法,用ForkJoinPool没任何意义。

所以我们要清楚的搞明白: CompletableFuture只是个同步/异步任务的编排工具类,为了保证任务执行顺序的绝对正确,同一个CompletableFuture内的任务是串行执行的,不管同步任务、还是异步任务都在排队在同一个栈里!所以其并不具备线程池这种能提高任务执行速度的能力的,它只是更方便的进行异步编程而已!一定要区分好!

这篇关于【JAVA多线程】CompletableFuture原理剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095956

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1