Android10.0(Q) 网络自动校时bug修改

2024-08-22 06:18

本文主要是介绍Android10.0(Q) 网络自动校时bug修改,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题现象

联网后系统时间依旧显示不对,和系统校时服务器有关系,之前低版本也修改过这个问题来着

修改方法

和之前低版本比对发现,以前的 NetworkTimeUpdateService 已经更名为 NewNetworkTimeUpdateService,而且代码变动不小,根据之前修改问题不大。

frameworks/base/services/core/java/com/android/server/NewNetworkTimeUpdateService.java

import java.io.PrintWriter;//M: For multiple NTP server retry
import java.util.ArrayList;
import android.os.AsyncTask;
import android.net.NetworkInfo;
+/*** Monitors the network time and updates the system time if it is out of sync* and there hasn't been any NITZ update from the carrier recently.
@@ -98,6 +103,18 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUp// connection to happen.private int mTryAgainCounter;//UGG add ,add ntp servers [S]                                         private static final String[] NTPSERVERLIST =  new String[]{"s1b.time.edu.cn","ntp3.aliyun.com","ntp4.aliyun.com","ntp5.aliyun.com",                                };                                        private AsyncTask ntpTimeTask;  private boolean isNtpTimeTaskRunning;  //UGG add ,add ntp servers [E] public NewNetworkTimeUpdateService(Context context) {mContext = context;mTime = NtpTrustedTime.getInstance(context);
@@ -138,6 +155,7 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUpprivate void registerForTelephonyIntents() {IntentFilter intentFilter = new IntentFilter();intentFilter.addAction(TelephonyIntents.ACTION_NETWORK_SET_TIME);intentFilter.addAction(ConnectivityManager.CONNECTIVITY_ACTION);mContext.registerReceiver(mNitzReceiver, intentFilter);}@@ -249,10 +267,49 @@ public class NewNetworkTimeUpdateService extends Binder implements NetworkTimeUpif (DBG) Log.d(TAG, "Received " + action);if (TelephonyIntents.ACTION_NETWORK_SET_TIME.equals(action)) {mNitzTimeSetTime = SystemClock.elapsedRealtime();}else if (ConnectivityManager.CONNECTIVITY_ACTION.equals(action)) {//UGG add ,add ntp servers [S]                                         NetworkInfo info = mCM.getActiveNetworkInfo();  if(info != null && info.isAvailable()) {String name = info.getTypeName();Log.d(TAG, "current networkType" + name);if(!isNtpTimeTaskRunning){isNtpTimeTaskRunning=true;new NtpTimeThread().start();}} else {Log.d(TAG, "no available network");// if(ntpTimeTask!=null){//     ntpTimeTask.cancel(true);// }}//UGG add ,add ntp servers [E]                                         }}};//UGG add ,add ntp servers [S]                                         public class NtpTimeThread extends Thread {@Overridepublic void run() {super.run();for(int i=0;i<NTPSERVERLIST.length;i++){try{sleep(1000);boolean result=GetNtpTIme.GetLocalNtpTime(NTPSERVERLIST[i]);Log.i(TAG,"NtpTimeThread result "+result);if(result){break;}}catch(Exception e){}}isNtpTimeTaskRunning=false;}}//UGG add ,add ntp servers [S]    /** Handler to do the network accesses on */private class MyHandler extends Handler {

同级目录下新增 GetNtpTIme.java 和 NtpMessage.java

frameworks/base/services/core/java/com/android/server/GetNtpTIme.java

package com.android.server;import java.io.IOException;
import java.io.InterruptedIOException;
import java.net.ConnectException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.NoRouteToHostException;
import java.net.UnknownHostException;
import java.util.Date;import android.os.SystemClock;
import android.util.Log;public class GetNtpTIme {private static String TAG="NetworkTimeUpdateService.GetNtpTIme";public static boolean GetLocalNtpTime(String ntpSvrIP) {boolean res = false;int retry = 0;int port = 123;int timeout = 10000;// get the address and NTP address requestInetAddress ipv4Addr = null;try {if(ntpSvrIP==null){ipv4Addr = InetAddress.getByName("s1b.time.edu.cn");}else{ipv4Addr = InetAddress.getByName(ntpSvrIP);}Log.d(TAG, "ntpSvrIP : " + ntpSvrIP+", ipv4Addr : "+ipv4Addr);} catch (UnknownHostException e1) {e1.printStackTrace();}int serviceStatus = -1;DatagramSocket socket = null;long responseTime = -1;try {socket = new DatagramSocket();socket.setSoTimeout(timeout); // will force the// InterruptedIOExceptionfor (int attempts = 0; attempts <= retry && serviceStatus != 1; attempts++) {try {// Send NTP requestbyte[] data = new NtpMessage().toByteArray();DatagramPacket outgoing = new DatagramPacket(data,data.length, ipv4Addr, port);long sentTime = System.currentTimeMillis();socket.send(outgoing);// Get NTP ResponseDatagramPacket incoming = new DatagramPacket(data,data.length);socket.receive(incoming);responseTime = System.currentTimeMillis() - sentTime;double destinationTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;// 这里要加2208988800,是因为获得到的时间是格林尼治时间,所以要变成东八区的时间,否则会与与北京时间有8小时的时差// Validate NTP Response// IOException thrown if packet does not decode as expected.NtpMessage msg = new NtpMessage(incoming.getData());double localClockOffset = ((msg.receiveTimestamp - msg.originateTimestamp) + (msg.transmitTimestamp - destinationTimestamp)) / 2;Log.d(TAG,"poll: valid NTP request received the local clock offset is "+ localClockOffset + ", responseTime= "+ responseTime + "ms");Log.d(TAG, "poll: NTP message : " + msg.toString());SystemClock.setCurrentTimeMillis(msg.GetCurrentMS(msg.transmitTimestamp));serviceStatus = 1;res = true;} catch (Exception ex1) {// Ignore, no response received.Log.d(TAG, "InterruptedIOException: "+ ex1.toString());}}} catch (NoRouteToHostException e) {Log.d(TAG, "No route to host exception for address: "+ ipv4Addr);} catch (ConnectException e) {// Connection refused. Continue to retry.e.fillInStackTrace();Log.d(TAG, "Connection exception for address: " + ipv4Addr);} catch (IOException ex) {ex.fillInStackTrace();Log.d(TAG, "IOException while polling address: " + ipv4Addr);} finally {if (socket != null){socket.close();Log.d(TAG, "ntp address: " + ipv4Addr+" res:"+String.valueOf(res));return res;}}// Store response time if available//if (serviceStatus == 1) {Log.d(TAG, "responsetime==" + responseTime);}return res;}
}

frameworks/base/services/core/java/com/android/server/NtpMessage.java

package com.android.server;import java.text.DecimalFormat;
import java.text.SimpleDateFormat;
import java.util.Date;public class NtpMessage {  /** *//** * This is a two-bit code warning of an impending leap second to be * inserted/deleted in the last minute of the current day. It''s values may * be as follows: *  * Value Meaning ----- ------- 0 no warning 1 last minute has 61 seconds 2 * last minute has 59 seconds) 3 alarm condition (clock not synchronized) */  public byte leapIndicator = 0;  /** *//** * This value indicates the NTP/SNTP version number. The version number is 3 * for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI). If * necessary to distinguish between IPv4, IPv6 and OSI, the encapsulating * context must be inspected. */  public byte version = 3;  /** *//** * This value indicates the mode, with values defined as follows: *  * Mode Meaning ---- ------- 0 reserved 1 symmetric active 2 symmetric * passive 3 client 4 server 5 broadcast 6 reserved for NTP control message * 7 reserved for private use *  * In unicast and anycast modes, the client sets this field to 3 (client) in * the request and the server sets it to 4 (server) in the reply. In * multicast mode, the server sets this field to 5 (broadcast). */  public byte mode = 0;  /** *//** * This value indicates the stratum level of the local clock, with values * defined as follows: *  * Stratum Meaning ---------------------------------------------- 0 * unspecified or unavailable 1 primary reference (e.g., radio clock) 2-15 * secondary reference (via NTP or SNTP) 16-255 reserved */  public short stratum = 0;  /** *//** * This value indicates the maximum interval between successive messages, in * seconds to the nearest power of two. The values that can appear in this * field presently range from 4 (16 s) to 14 (16284 s); however, most * applications use only the sub-range 6 (64 s) to 10 (1024 s). */  public byte pollInterval = 0;  /** *//** * This value indicates the precision of the local clock, in seconds to the * nearest power of two. The values that normally appear in this field * range from -6 for mains-frequency clocks to -20 for microsecond clocks * found in some workstations. */  public byte precision = 0;  /** *//** * This value indicates the total roundtrip delay to the primary reference * source, in seconds. Note that this variable can take on both positive and * negative values, depending on the relative time and frequency offsets. * The values that normally appear in this field range from negative values * of a few milliseconds to positive values of several hundred milliseconds. */  public double rootDelay = 0;  /** *//** * This value indicates the nominal error relative to the primary reference * source, in seconds. The values that normally appear in this field range * from 0 to several hundred milliseconds. */  public double rootDispersion = 0;  /** *//** * This is a 4-byte array identifying the particular reference source. In * the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or * stratum-1 (primary) servers, this is a four-character ASCII string, left * justified and zero padded to 32 bits. In NTP Version 3 secondary servers, * this is the 32-bit IPv4 address of the reference source. In NTP Version 4 * secondary servers, this is the low order 32 bits of the latest transmit * timestamp of the reference source. NTP primary (stratum 1) servers should * set this field to a code identifying the external reference source * according to the following list. If the external reference is one of * those listed, the associated code should be used. Codes for sources not * listed can be contrived as appropriate. *  * Code External Reference Source ---- ------------------------- LOCL * uncalibrated local clock used as a primary reference for a subnet without * external means of synchronization PPS atomic clock or other * pulse-per-second source individually calibrated to national standards * ACTS NIST dialup modem service USNO USNO modem service PTB PTB (Germany) * modem service TDF Allouis (France) Radio 164 kHz DCF Mainflingen * (Germany) Radio 77.5 kHz MSF Rugby (UK) Radio 60 kHz WWV Ft. Collins (US) * Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kaui * Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330, * 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA * radionavigation system GPS Global Positioning Service GOES Geostationary * Orbit Environment Satellite */  public byte[] referenceIdentifier = { 0, 0, 0, 0 };  /** *//** * This is the time at which the local clock was last set or corrected, in * seconds since 00:00 1-Jan-1900. */  public double referenceTimestamp = 0;  /** *//** * This is the time at which the request departed the client for the server, * in seconds since 00:00 1-Jan-1900. */  public double originateTimestamp = 0;  /** *//** * This is the time at which the request arrived at the server, in seconds * since 00:00 1-Jan-1900. */  public double receiveTimestamp = 0;  /** *//** * This is the time at which the reply departed the server for the client, * in seconds since 00:00 1-Jan-1900. */  public double transmitTimestamp = 0;  /** *//** * Constructs a new NtpMessage from an array of bytes. */  public NtpMessage(byte[] array) {  // See the packet format diagram in RFC 2030 for details  leapIndicator = (byte) ((array[0] >> 6) & 0x3);  version = (byte) ((array[0] >> 3) & 0x7);  mode = (byte) (array[0] & 0x7);  stratum = unsignedByteToShort(array[1]);  pollInterval = array[2];  precision = array[3];  rootDelay = (array[4] * 256.0) + unsignedByteToShort(array[5]) + (unsignedByteToShort(array[6]) / 256.0) + (unsignedByteToShort(array[7]) / 65536.0);  rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + unsignedByteToShort(array[9]) + (unsignedByteToShort(array[10]) / 256.0) + (unsignedByteToShort(array[11]) / 65536.0);  referenceIdentifier[0] = array[12];  referenceIdentifier[1] = array[13];  referenceIdentifier[2] = array[14];  referenceIdentifier[3] = array[15];  referenceTimestamp = decodeTimestamp(array, 16);  originateTimestamp = decodeTimestamp(array, 24);  receiveTimestamp = decodeTimestamp(array, 32);  transmitTimestamp = decodeTimestamp(array, 40);  }  /** *//** * Constructs a new NtpMessage */  public NtpMessage(byte leapIndicator, byte version, byte mode, short stratum, byte pollInterval, byte precision, double rootDelay, double rootDispersion, byte[] referenceIdentifier, double referenceTimestamp, double originateTimestamp, double receiveTimestamp, double transmitTimestamp) {  // ToDo: Validity checking  this.leapIndicator = leapIndicator;  this.version = version;  this.mode = mode;  this.stratum = stratum;  this.pollInterval = pollInterval;  this.precision = precision;  this.rootDelay = rootDelay;  this.rootDispersion = rootDispersion;  this.referenceIdentifier = referenceIdentifier;  this.referenceTimestamp = referenceTimestamp;  this.originateTimestamp = originateTimestamp;  this.receiveTimestamp = receiveTimestamp;  this.transmitTimestamp = transmitTimestamp;  }  /** *//** * Constructs a new NtpMessage in client -> server mode, and sets the * transmit timestamp to the current time. */  public NtpMessage() {  // Note that all the other member variables are already set with  // appropriate default values.  this.mode = 3;  this.transmitTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;  }  /** *//** * This method constructs the data bytes of a raw NTP packet. */  public byte[] toByteArray() {  // All bytes are automatically set to 0  byte[] p = new byte[48];  p[0] = (byte) (leapIndicator << 6 | version << 3 | mode);  p[1] = (byte) stratum;  p[2] = (byte) pollInterval;  p[3] = (byte) precision;  // root delay is a signed 16.16-bit FP, in Java an int is 32-bits  int l = (int) (rootDelay * 65536.0);  p[4] = (byte) ((l >> 24) & 0xFF);  p[5] = (byte) ((l >> 16) & 0xFF);  p[6] = (byte) ((l >> 8) & 0xFF);  p[7] = (byte) (l & 0xFF);  // root dispersion is an unsigned 16.16-bit FP, in Java there are no  // unsigned primitive types, so we use a long which is 64-bits  long ul = (long) (rootDispersion * 65536.0);  p[8] = (byte) ((ul >> 24) & 0xFF);  p[9] = (byte) ((ul >> 16) & 0xFF);  p[10] = (byte) ((ul >> 8) & 0xFF);  p[11] = (byte) (ul & 0xFF);  p[12] = referenceIdentifier[0];  p[13] = referenceIdentifier[1];  p[14] = referenceIdentifier[2];  p[15] = referenceIdentifier[3];  encodeTimestamp(p, 16, referenceTimestamp);  encodeTimestamp(p, 24, originateTimestamp);  encodeTimestamp(p, 32, receiveTimestamp);  encodeTimestamp(p, 40, transmitTimestamp);  return p;  }  /** *//** * Returns a string representation of a NtpMessage */  public String toString() {  String precisionStr = new DecimalFormat("0.#E0").format(Math.pow(2, precision));  return "Leap indicator: " + leapIndicator + " " + "Version: " + version + " " + "Mode: " + mode + " " + "Stratum: " + stratum + " " + "Poll: " + pollInterval + " " + "Precision: " + precision + " (" + precisionStr + " seconds) " + "Root delay: " + new DecimalFormat("0.00").format(rootDelay * 1000) + " ms " + "Root dispersion: " + new DecimalFormat("0.00").format(rootDispersion * 1000) + " ms " + "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + " " + "Reference timestamp: " + timestampToString(referenceTimestamp) + " " + "Originate timestamp: " + timestampToString(originateTimestamp) + " " + "Receive timestamp:   " + timestampToString(receiveTimestamp) + " " + "Transmit timestamp: " + timestampToString(transmitTimestamp);  }  /** *//** * Converts an unsigned byte to a short. By default, Java assumes that a * byte is signed. */  public static short unsignedByteToShort(byte b) {  if ((b & 0x80) == 0x80)  return (short) (128 + (b & 0x7f));  else  return (short) b;  }  /** *//** * Will read 8 bytes of a message beginning at <code>pointer</code> and * return it as a double, according to the NTP 64-bit timestamp format. */  public static double decodeTimestamp(byte[] array, int pointer) {  double r = 0.0;  for (int i = 0; i < 8; i++) {  r += unsignedByteToShort(array[pointer + i]) * Math.pow(2, (3 - i) * 8);  }  return r;  }  /** *//** * Encodes a timestamp in the specified position in the message */  public static void encodeTimestamp(byte[] array, int pointer, double timestamp) {  // Converts a double into a 64-bit fixed point  for (int i = 0; i < 8; i++) {  // 2^24, 2^16, 2^8, .. 2^-32  double base = Math.pow(2, (3 - i) * 8);  // Capture byte value  array[pointer + i] = (byte) (timestamp / base);  // Subtract captured value from remaining total  timestamp = timestamp - (double) (unsignedByteToShort(array[pointer + i]) * base);  }  // From RFC 2030: It is advisable to fill the non-significant  // low order bits of the timestamp with a random, unbiased  // bitstring, both to avoid systematic roundoff errors and as  // a means of loop detection and replay detection.  array[7] = (byte) (Math.random() * 255.0);  }  /** *//** * Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a * formatted date/time string. */  public static String timestampToString(double timestamp) {  if (timestamp == 0)  return "0";  // timestamp is relative to 1900, utc is used by Java and is relative  // to 1970  double utc = timestamp - (2208988800.0);  // milliseconds  long ms = (long) (utc * 1000.0);  // date/time  String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms));  // fraction  double fraction = timestamp - ((long) timestamp);  String fractionSting = new DecimalFormat(".000000").format(fraction);  return date + fractionSting;  }  public long GetCurrentMS(double timestamp){if (timestamp == 0)  return 0;  // timestamp is relative to 1900, utc is used by Java and is relative  // to 1970  double utc = timestamp - (2208988800.0);  // milliseconds  long ms = (long) (utc * 1000.0);  return ms;}/** *//** * Returns a string representation of a reference identifier according to * the rules set out in RFC 2030. */  public static String referenceIdentifierToString(byte[] ref, short stratum, byte version) {  // From the RFC 2030:  // In the case of NTP Version 3 or Version 4 stratum-0 (unspecified)  // or stratum-1 (primary) servers, this is a four-character ASCII  // string, left justified and zero padded to 32 bits.  if (stratum == 0 || stratum == 1) {  return new String(ref);  }  // In NTP Version 3 secondary servers, this is the 32-bit IPv4  // address of the reference source.  else if (version == 3) {  return unsignedByteToShort(ref[0]) + "." + unsignedByteToShort(ref[1]) + "." + unsignedByteToShort(ref[2]) + "." + unsignedByteToShort(ref[3]);  }  // In NTP Version 4 secondary servers, this is the low order 32 bits  // of the latest transmit timestamp of the reference source.  else if (version == 4) {  return "" + ((unsignedByteToShort(ref[0]) / 256.0) + (unsignedByteToShort(ref[1]) / 65536.0) + (unsignedByteToShort(ref[2]) / 16777216.0) + (unsignedByteToShort(ref[3]) / 4294967296.0));  }  return "";  }  
}  

这篇关于Android10.0(Q) 网络自动校时bug修改的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095473

相关文章

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

两个月冲刺软考——访问位与修改位的题型(淘汰哪一页);内聚的类型;关于码制的知识点;地址映射的相关内容

1.访问位与修改位的题型(淘汰哪一页) 访问位:为1时表示在内存期间被访问过,为0时表示未被访问;修改位:为1时表示该页面自从被装入内存后被修改过,为0时表示未修改过。 置换页面时,最先置换访问位和修改位为00的,其次是01(没被访问但被修改过)的,之后是10(被访问了但没被修改过),最后是11。 2.内聚的类型 功能内聚:完成一个单一功能,各个部分协同工作,缺一不可。 顺序内聚:

Python3 BeautifulSoup爬虫 POJ自动提交

POJ 提交代码采用Base64加密方式 import http.cookiejarimport loggingimport urllib.parseimport urllib.requestimport base64from bs4 import BeautifulSoupfrom submitcode import SubmitCodeclass SubmitPoj():de

如何在运行时修改serialVersionUID

优质博文:IT-BLOG-CN 问题 我正在使用第三方库连接到外部系统,一切运行正常,但突然出现序列化错误 java.io.InvalidClassException: com.essbase.api.base.EssException; local class incompatible: stream classdesc serialVersionUID = 90314637791991

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo