python——concurrent.futures

2024-08-22 03:52
文章标签 python futures concurrent

本文主要是介绍python——concurrent.futures,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

concurrent.futures 是 Python 标准库中用于并行编程的高级模块,它提供了一种高级别的接口来管理线程和进程。通过这个模块,你可以轻松地利用多线程和多进程来并行执行任务,进而提高程序的执行效率。

1. concurrent.futures 概述

concurrent.futures 提供了两种执行器类型:

  • ThreadPoolExecutor:用于管理线程池。
  • ProcessPoolExecutor:用于管理进程池。

这两种执行器都实现了同样的接口,因此你可以使用相同的代码逻辑来管理线程和进程。

2. 核心 API

2.1 concurrent.futures.Executor

Executor 是一个抽象基类,它定义了任务提交和管理的核心接口。以下是 Executor 提供的主要方法:

  • submit(fn, *args, **kwargs)

    • 提交一个函数给执行器,函数会在独立的线程或进程中执行。返回一个 Future 对象。
    • 场景:当你需要执行一个后台任务并获取结果时使用。
    from concurrent.futures import ThreadPoolExecutordef square(n):return n * nwith ThreadPoolExecutor() as executor:future = executor.submit(square, 10)print(future.result())  # 输出: 100
    
  • map(func, *iterables, timeout=None, chunksize=1)

    • 将一个函数应用于一个或多个迭代器中的每个元素,并行地执行。类似于内置的 map() 函数,但它会并行执行。
    • 场景:当你有一组数据需要并行处理时使用。
    with ThreadPoolExecutor() as executor:results = executor.map(square, range(10))print(list(results))  # 输出: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    
  • shutdown(wait=True, cancel_futures=False)

    • 释放执行器资源。如果 wait=True,则会等待所有提交的任务完成;如果 cancel_futures=True,则会取消所有未开始的任务。
    • 场景:当你需要优雅地关闭执行器时使用。
    executor.shutdown(wait=True)
    
2.2 concurrent.futures.Future

Future 对象用于表示异步执行的任务结果。以下是 Future 提供的主要方法:

  • result(timeout=None)

    • 获取任务的结果,如果任务还未完成,则会等待。你可以设置一个超时时间。
    • 场景:当你需要获取异步任务的执行结果时使用。
    result = future.result(timeout=5)  # 等待最多5秒
    
  • exception(timeout=None)

    • 如果任务抛出了异常,则返回该异常对象,否则返回 None
    • 场景:当你想处理任务中的异常时使用。
    try:result = future.result()
    except Exception as e:print(f"Error occurred: {e}")
    
  • done()

    • 检查任务是否已完成。
    • 场景:当你想知道任务是否已经完成时使用。
    if future.done():print("Task is completed.")
    
  • add_done_callback(fn)

    • Future 对象添加一个回调函数,当任务完成时会自动调用此回调。
    • 场景:当你需要在任务完成后自动触发某些操作时使用。
    def on_done(fut):print(f"Task done with result: {fut.result()}")future.add_done_callback(on_done)
    

3. ThreadPoolExecutorProcessPoolExecutor

3.1 ThreadPoolExecutor
  • 线程池执行器,用于管理线程。适用于 I/O 密集型任务,如文件操作、网络请求等。

    with ThreadPoolExecutor(max_workers=5) as executor:future = executor.submit(square, 10)
    
    • 参数说明
      • max_workers:最大并发线程数。
3.2 ProcessPoolExecutor
  • 进程池执行器,用于管理进程。适用于 CPU 密集型任务,如计算密集型操作。

    from concurrent.futures import ProcessPoolExecutorwith ProcessPoolExecutor(max_workers=5) as executor:future = executor.submit(square, 10)
    
    • 参数说明
      • max_workers:最大并发进程数。

4. 使用场景

4.1 I/O 密集型任务

场景:当你有多个需要等待 I/O 操作(如文件读取、网络请求)的任务时,可以使用 ThreadPoolExecutor 来并行执行这些任务,从而减少总的等待时间。

import requestsdef fetch_url(url):response = requests.get(url)return response.status_codeurls = ['https://www.example.com', 'https://www.google.com', 'https://www.github.com']with ThreadPoolExecutor(max_workers=3) as executor:results = executor.map(fetch_url, urls)print(list(results))
4.2 CPU 密集型任务

场景:当你有多个需要大量计算的任务时,可以使用 ProcessPoolExecutor 来并行执行,从而充分利用多核 CPU 提高效率。

def fibonacci(n):if n <= 1:return nelse:return fibonacci(n-1) + fibonacci(n-2)with ProcessPoolExecutor(max_workers=3) as executor:results = executor.map(fibonacci, range(10, 20))print(list(results))

5. 总结

concurrent.futures 提供了一个方便的接口来管理多线程和多进程的并发执行。通过理解和使用这些 API,你可以更有效地编写并行程序,提高程序的执行效率。在选择使用 ThreadPoolExecutor 还是 ProcessPoolExecutor 时,应根据任务的性质(I/O 密集型或 CPU 密集型)来决定。

这篇关于python——concurrent.futures的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1095160

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e