STM32——I2C通信外设

2024-08-21 20:36
文章标签 stm32 通信 i2c 外设

本文主要是介绍STM32——I2C通信外设,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

软件只需要CR控制寄存器,DR数据寄存器,为实时监控状态,软件需要读取SR状态寄存器,好比:开车时CR是控制汽车方向,踩油门等,SR是仪表盘。

由于I2C是半双工,因此发送和接收数据都是在移位寄存器和DATA 寄存器中进行,发送数据时,在数据向移位寄存器转移时,新的数据就会进入到DATA寄存器中。

接收数据时先到移位寄存器,之后转移到DATA寄存器

简化如下:由于I2C是高位先行,因此发送数据是左移。

I2C的GPIO为开漏输出模式

此处时钟可以输入也可以输出

  之后是主机发送部分:

首先是10位的帧头,11110+2位地址位+1位读写位,后边是剩余8位地址位

发送数据:数据写入DR中,之后当移位寄存器空时,将数据转入移位寄存器中进行发送,当DR中的一个数据被全部转移到移位寄存器时,就会有新的数据进入到DR中,等待进行下一次转移到移位寄存器中,当接收应答位后,数据就被转移到移位寄存器中

主机接收部分:以当前地址读的形式展示主机接收

起始条件——从机地址+读——应答——接收数据——应答——接收数据——非应答——终止

代码部分,在硬件中不需要用软件配制I2C协议的内容,全由硬件实现

首先是初始化部分,相对比与软件来说,硬件这部分初始化需要增加部分:1、开启I2C和GPIO口的时钟;2、对GPIO口进行设置并为复用开漏输出模式(复用:GPIO控制权交给外设);3、对I2C进行设置;4、开启I2C使能

对MPU6050的配置保留。

时钟速度在100KHz下是标准模式,高低电平时间一致,占空比为1:1;超过100KHz后,进入快速模式,低/高近似=2:1;400KHz最大时钟速度

和软件一致。

之后是写寄存器的代码需要进行替换:

根据上面的主机发送图可得:

先设置起始条件——EV5事件——发送从机地址并应答——EV6(发送数据的代码)——发送寄存器地址并应答——EV8——发送数据(一个字节)——EV8_2——停止条件

为代码更加简便,增加了一个等待函数,当超时时就不再等待事件的发生,防止卡死

之后是主机接收的过程:

起始条件——EV5——发送从机地址并应答——EV6(发送数据的代码)——发送寄存器地址并应答——EV8_2/8——重新发送起始条件——EV5——发送从机地址并应答——EV6(接收数据的代码)—ACK=0失能(只读取一个字节时)——停止条件——EV7——接收数据——ACK=1使能(默认是1使能)——返回数据

实验结果与上一篇一致

这篇关于STM32——I2C通信外设的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094219

相关文章

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

vue2 组件通信

props + emits props:用于接收父组件传递给子组件的数据。可以定义期望从父组件接收的数据结构和类型。‘子组件不可更改该数据’emits:用于定义组件可以向父组件发出的事件。这允许父组件监听子组件的事件并作出响应。(比如数据更新) props检查属性 属性名类型描述默认值typeFunction指定 prop 应该是什么类型,如 String, Number, Boolean,

STM32(十一):ADC数模转换器实验

AD单通道: 1.RCC开启GPIO和ADC时钟。配置ADCCLK分频器。 2.配置GPIO,把GPIO配置成模拟输入的模式。 3.配置多路开关,把左面通道接入到右面规则组列表里。 4.配置ADC转换器, 包括AD转换器和AD数据寄存器。单次转换,连续转换;扫描、非扫描;有几个通道,触发源是什么,数据对齐是左对齐还是右对齐。 5.ADC_CMD 开启ADC。 void RCC_AD

STM32内部闪存FLASH(内部ROM)、IAP

1 FLASH简介  1 利用程序存储器的剩余空间来保存掉电不丢失的用户数据 2 通过在程序中编程(IAP)实现程序的自我更新 (OTA) 3在线编程(ICP把整个程序都更新掉) 1 系统的Bootloader写死了,只能用串口下载到指定的位置,启动方式也不方便需要配置BOOT引脚触发启动  4 IAP(自己写的Bootloader,实现程序升级) 1 比如蓝牙转串口,

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

linux中使用rust语言在不同进程之间通信

第一种:使用mmap映射相同文件 fn main() {let pid = std::process::id();println!(

STM32 ADC+DMA导致写FLASH失败

最近用STM32G070系列的ADC+DMA采样时,遇到了一些小坑记录一下; 一、ADC+DMA采样时进入死循环; 解决方法:ADC-dma死循环问题_stm32 adc dma死机-CSDN博客 将ADC的DMA中断调整为最高,且增大ADCHAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buffer, ADC_Buffer_Size); 的ADC_Bu

C++编程:ZeroMQ进程间(订阅-发布)通信配置优化

文章目录 0. 概述1. 发布者同步发送(pub)与订阅者异步接收(sub)示例代码可能的副作用: 2. 适度增加缓存和队列示例代码副作用: 3. 动态的IPC通道管理示例代码副作用: 4. 接收消息的超时设置示例代码副作用: 5. 增加I/O线程数量示例代码副作用: 6. 异步消息发送(使用`dontwait`标志)示例代码副作用: 7. 其他可以考虑的优化项7.1 立即发送(ZMQ_IM