TensorFlow MatMul操作rank错误问题记录

2024-08-21 20:08

本文主要是介绍TensorFlow MatMul操作rank错误问题记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个问题应该算是很简单的,只不过我是新手,需要多记录下。在看Stanford的TensorFlow教程(地址为:https://www.youtube.com/watch?v=g-EvyKpZjmQ&list=PLQ0sVbIj3URf94DQtGPJV629ctn2c1zN-)Lecture 1的一段代码的时候,发现并不能运行:

import tensorflow as tfwith tf.device('/gpu:1'):a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='a')b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='b')c = tf.matmul(a, b)sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))print(sess.run(c))

报错为:ValueError: Shape must be rank 2 but is rank 1 for 'MatMul' (op: 'MatMul') with input shapes: [6], [6].

TensorFlow才接触不久,基本都是运行下别人的代码,看看效果,所以对其中的方法也都是混个脸熟,并不十分清楚。这里的tf.matmul()方法和另一个tf.mul()要区分下,tf.mul实际上在新版的TensorFlow中已经修改为tf.multiply()了,我是参考https://blog.csdn.net/liuyuemaicha/article/details/70305678这篇博文学习的,测试下multiply:

import tensorflow as tfa = tf.get_variable('a', [2, 3], initializer=tf.random_normal_initializer(mean=0, stddev=1))
b = tf.get_variable('b', [2, 3], initializer=tf.constant_initializer(2))
c = tf.get_variable('c', [3, 2], initializer=tf.ones_initializer())init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)print('a:\n', sess.run(a))print('b:\n', sess.run(b))print('c:\n', sess.run(c))print('multiply a, b')print(sess.run(tf.multiply(a, b)))print('matmul a, c')print(sess.run(tf.matmul(a, c)))

tf.get_variable()方法的使用第一个参数是name,第二个是shape,第三个是initializer。tf.random_normal_initializer()方法就是返回一个具有正态分布的张量初始化器,均值(期望值)mean默认为0,标准差默认为1,也就是默认为标准正态分布。得到的结果为:

a:
 [[-1.2580129   0.42341614  0.2203044 ]
 [-1.1805797  -1.8744725  -0.1812443 ]]
b:
 [[2. 2. 2.]
 [2. 2. 2.]]
c:
 [[1. 1.]
 [1. 1.]
 [1. 1.]]
multiply a, b
[[-2.5160258  0.8468323  0.4406088]
 [-2.3611593 -3.748945  -0.3624886]]
matmul a, c
[[-0.6142924 -0.6142924]
 [-3.2362967 -3.2362967]]

可以看到tf.multiply()方法是对应位置元素直接相乘的,因此要求二者的shape相等,该操作也成为哈达马积(Hadamard)。a和c两个变量一个是2行3列,一个3行2列,可以用tf.matmul()方法求矩阵乘积,得到了2行2列的一个矩阵。

回到刚刚的问题,比如参考https://blog.csdn.net/blythe0107/article/details/74171870,可以采用reshape的方式,使前者的列等于后者的行也就行了,如下:

import tensorflow as tf
import numpy as npwith tf.device('/gpu:0'):a = tf.constant(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(2, 3), name='a')b = tf.constant(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(3, 2), name='b')c = tf.matmul(a, b)with tf.device('/gpu:1'):d = tf.constant(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(2, 3), name='d')e = tf.constant(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(3, 2), name='e')f = tf.matmul(d, e)sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))print(sess.run(c))
print(sess.run(f))

这样得到的输出如下:

2018-08-02 15:52:42.801535: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 1:   Y N
2018-08-02 15:52:42.801871: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10388 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:21:00.0, compute capability: 6.1)
2018-08-02 15:52:42.905229: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10407 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:2d:00.0, compute capability: 6.1)
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:21:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:2d:00.0, compute capability: 6.1
2018-08-02 15:52:43.010702: I tensorflow/core/common_runtime/direct_session.cc:288] Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:21:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:2d:00.0, compute capability: 6.1

MatMul: (MatMul): /job:localhost/replica:0/task:0/device:GPU:0
2018-08-02 15:52:43.011677: I tensorflow/core/common_runtime/placer.cc:886] MatMul: (MatMul)/job:localhost/replica:0/task:0/device:GPU:0
MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:GPU:1
2018-08-02 15:52:43.011720: I tensorflow/core/common_runtime/placer.cc:886] MatMul_1: (MatMul)/job:localhost/replica:0/task:0/device:GPU:1
a: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2018-08-02 15:52:43.011741: I tensorflow/core/common_runtime/placer.cc:886] a: (Const)/job:localhost/replica:0/task:0/device:GPU:0
b: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2018-08-02 15:52:43.011760: I tensorflow/core/common_runtime/placer.cc:886] b: (Const)/job:localhost/replica:0/task:0/device:GPU:0
d: (Const): /job:localhost/replica:0/task:0/device:GPU:1
2018-08-02 15:52:43.011778: I tensorflow/core/common_runtime/placer.cc:886] d: (Const)/job:localhost/replica:0/task:0/device:GPU:1
e: (Const): /job:localhost/replica:0/task:0/device:GPU:1
2018-08-02 15:52:43.011795: I tensorflow/core/common_runtime/placer.cc:886] e: (Const)/job:localhost/replica:0/task:0/device:GPU:1
[[22. 28.]
 [49. 64.]]
[[22. 28.]
 [49. 64.]]

可以看到,变量和op可以指定GPU,本例中a和b用了GPU0,另外也处理了matmul()的操作。而d和e即计算f的任务则放在了GPU1上,这个可能算是最简单了单主机多GPU使用了。

关于前面的变量使用,记录如下。

TensorFlow有两个关于variable的op,即tf.Variable()和tf.get_variable(),这里参考

https://blog.csdn.net/u012436149/article/details/53696970/学习下。比如下面的代码:

import tensorflow as tfw_1 = tf.Variable(3, name='w_1')
w_2 = tf.Variable(1, name='w_1')print(w_1.name)
print(w_2.name)init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)sess.run(tf.Print(w_1, [w_1, w_1.name, str(w_1.value)]))sess.run(tf.Print(w_2, [w_2, w_2.name, str(w_2.value)]))

这里使用了tf.Print()方法来输出一些调试信息,其value部分用str()方法处理下不然报错。输出结果:

w_1:0
w_1_1:0

[3][w_1:0][<bound method Variable.value of <tf.Variable \'w_1:0\' shape=() dtype=int32_ref>>]
[1][w_1_1:0][<bound method Variable.value of <tf.Variable \'w_1_1:0\' shape=() dtype=int32_ref>>]

使用tf.Variable()系统会自动处理命名冲突,这里如果用tf.get_variable()则会报错w_1变量已存在。所以当我们需要共享变量的时候,用tf.get_variable()。关于其实质区别,看下这段代码:

import tensorflow as tfwith tf.variable_scope('scope1'):w1 = tf.get_variable('w1', shape=[])w2 = tf.Variable(0.0, name='w_1')with tf.variable_scope('scope1', reuse=True):w1_p = tf.get_variable('w1', shape=[])w2_p = tf.Variable(1.0, name='w2')print(w1 is w1_p, w2 is w2_p)

输出为True False。由于tf.Variable()每次都在创建新对象,所有reuse=True 和它并没有什么关系。对于get_variable(),如果已经创建的变量对象,就把那个对象返回,如果没有创建变量对象的话,就创建一个新的。

 

这篇关于TensorFlow MatMul操作rank错误问题记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094153

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1