TensorFlow MatMul操作rank错误问题记录

2024-08-21 20:08

本文主要是介绍TensorFlow MatMul操作rank错误问题记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个问题应该算是很简单的,只不过我是新手,需要多记录下。在看Stanford的TensorFlow教程(地址为:https://www.youtube.com/watch?v=g-EvyKpZjmQ&list=PLQ0sVbIj3URf94DQtGPJV629ctn2c1zN-)Lecture 1的一段代码的时候,发现并不能运行:

import tensorflow as tfwith tf.device('/gpu:1'):a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='a')b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], name='b')c = tf.matmul(a, b)sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))print(sess.run(c))

报错为:ValueError: Shape must be rank 2 but is rank 1 for 'MatMul' (op: 'MatMul') with input shapes: [6], [6].

TensorFlow才接触不久,基本都是运行下别人的代码,看看效果,所以对其中的方法也都是混个脸熟,并不十分清楚。这里的tf.matmul()方法和另一个tf.mul()要区分下,tf.mul实际上在新版的TensorFlow中已经修改为tf.multiply()了,我是参考https://blog.csdn.net/liuyuemaicha/article/details/70305678这篇博文学习的,测试下multiply:

import tensorflow as tfa = tf.get_variable('a', [2, 3], initializer=tf.random_normal_initializer(mean=0, stddev=1))
b = tf.get_variable('b', [2, 3], initializer=tf.constant_initializer(2))
c = tf.get_variable('c', [3, 2], initializer=tf.ones_initializer())init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)print('a:\n', sess.run(a))print('b:\n', sess.run(b))print('c:\n', sess.run(c))print('multiply a, b')print(sess.run(tf.multiply(a, b)))print('matmul a, c')print(sess.run(tf.matmul(a, c)))

tf.get_variable()方法的使用第一个参数是name,第二个是shape,第三个是initializer。tf.random_normal_initializer()方法就是返回一个具有正态分布的张量初始化器,均值(期望值)mean默认为0,标准差默认为1,也就是默认为标准正态分布。得到的结果为:

a:
 [[-1.2580129   0.42341614  0.2203044 ]
 [-1.1805797  -1.8744725  -0.1812443 ]]
b:
 [[2. 2. 2.]
 [2. 2. 2.]]
c:
 [[1. 1.]
 [1. 1.]
 [1. 1.]]
multiply a, b
[[-2.5160258  0.8468323  0.4406088]
 [-2.3611593 -3.748945  -0.3624886]]
matmul a, c
[[-0.6142924 -0.6142924]
 [-3.2362967 -3.2362967]]

可以看到tf.multiply()方法是对应位置元素直接相乘的,因此要求二者的shape相等,该操作也成为哈达马积(Hadamard)。a和c两个变量一个是2行3列,一个3行2列,可以用tf.matmul()方法求矩阵乘积,得到了2行2列的一个矩阵。

回到刚刚的问题,比如参考https://blog.csdn.net/blythe0107/article/details/74171870,可以采用reshape的方式,使前者的列等于后者的行也就行了,如下:

import tensorflow as tf
import numpy as npwith tf.device('/gpu:0'):a = tf.constant(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(2, 3), name='a')b = tf.constant(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(3, 2), name='b')c = tf.matmul(a, b)with tf.device('/gpu:1'):d = tf.constant(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(2, 3), name='d')e = tf.constant(np.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).reshape(3, 2), name='e')f = tf.matmul(d, e)sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))print(sess.run(c))
print(sess.run(f))

这样得到的输出如下:

2018-08-02 15:52:42.801535: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 1:   Y N
2018-08-02 15:52:42.801871: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10388 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:21:00.0, compute capability: 6.1)
2018-08-02 15:52:42.905229: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10407 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:2d:00.0, compute capability: 6.1)
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:21:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:2d:00.0, compute capability: 6.1
2018-08-02 15:52:43.010702: I tensorflow/core/common_runtime/direct_session.cc:288] Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:21:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:2d:00.0, compute capability: 6.1

MatMul: (MatMul): /job:localhost/replica:0/task:0/device:GPU:0
2018-08-02 15:52:43.011677: I tensorflow/core/common_runtime/placer.cc:886] MatMul: (MatMul)/job:localhost/replica:0/task:0/device:GPU:0
MatMul_1: (MatMul): /job:localhost/replica:0/task:0/device:GPU:1
2018-08-02 15:52:43.011720: I tensorflow/core/common_runtime/placer.cc:886] MatMul_1: (MatMul)/job:localhost/replica:0/task:0/device:GPU:1
a: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2018-08-02 15:52:43.011741: I tensorflow/core/common_runtime/placer.cc:886] a: (Const)/job:localhost/replica:0/task:0/device:GPU:0
b: (Const): /job:localhost/replica:0/task:0/device:GPU:0
2018-08-02 15:52:43.011760: I tensorflow/core/common_runtime/placer.cc:886] b: (Const)/job:localhost/replica:0/task:0/device:GPU:0
d: (Const): /job:localhost/replica:0/task:0/device:GPU:1
2018-08-02 15:52:43.011778: I tensorflow/core/common_runtime/placer.cc:886] d: (Const)/job:localhost/replica:0/task:0/device:GPU:1
e: (Const): /job:localhost/replica:0/task:0/device:GPU:1
2018-08-02 15:52:43.011795: I tensorflow/core/common_runtime/placer.cc:886] e: (Const)/job:localhost/replica:0/task:0/device:GPU:1
[[22. 28.]
 [49. 64.]]
[[22. 28.]
 [49. 64.]]

可以看到,变量和op可以指定GPU,本例中a和b用了GPU0,另外也处理了matmul()的操作。而d和e即计算f的任务则放在了GPU1上,这个可能算是最简单了单主机多GPU使用了。

关于前面的变量使用,记录如下。

TensorFlow有两个关于variable的op,即tf.Variable()和tf.get_variable(),这里参考

https://blog.csdn.net/u012436149/article/details/53696970/学习下。比如下面的代码:

import tensorflow as tfw_1 = tf.Variable(3, name='w_1')
w_2 = tf.Variable(1, name='w_1')print(w_1.name)
print(w_2.name)init_op = tf.global_variables_initializer()with tf.Session() as sess:sess.run(init_op)sess.run(tf.Print(w_1, [w_1, w_1.name, str(w_1.value)]))sess.run(tf.Print(w_2, [w_2, w_2.name, str(w_2.value)]))

这里使用了tf.Print()方法来输出一些调试信息,其value部分用str()方法处理下不然报错。输出结果:

w_1:0
w_1_1:0

[3][w_1:0][<bound method Variable.value of <tf.Variable \'w_1:0\' shape=() dtype=int32_ref>>]
[1][w_1_1:0][<bound method Variable.value of <tf.Variable \'w_1_1:0\' shape=() dtype=int32_ref>>]

使用tf.Variable()系统会自动处理命名冲突,这里如果用tf.get_variable()则会报错w_1变量已存在。所以当我们需要共享变量的时候,用tf.get_variable()。关于其实质区别,看下这段代码:

import tensorflow as tfwith tf.variable_scope('scope1'):w1 = tf.get_variable('w1', shape=[])w2 = tf.Variable(0.0, name='w_1')with tf.variable_scope('scope1', reuse=True):w1_p = tf.get_variable('w1', shape=[])w2_p = tf.Variable(1.0, name='w2')print(w1 is w1_p, w2 is w2_p)

输出为True False。由于tf.Variable()每次都在创建新对象,所有reuse=True 和它并没有什么关系。对于get_variable(),如果已经创建的变量对象,就把那个对象返回,如果没有创建变量对象的话,就创建一个新的。

 

这篇关于TensorFlow MatMul操作rank错误问题记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1094153

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

题目1254:N皇后问题

题目1254:N皇后问题 时间限制:1 秒 内存限制:128 兆 特殊判题:否 题目描述: N皇后问题,即在N*N的方格棋盘内放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在同一斜线上。因为皇后可以直走,横走和斜走如下图)。 你的任务是,对于给定的N,求出有多少种合法的放置方法。输出N皇后问题所有不同的摆放情况个数。 输入

vscode中文乱码问题,注释,终端,调试乱码一劳永逸版

忘记咋回事突然出现了乱码问题,很多方法都试了,注释乱码解决了,终端又乱码,调试窗口也乱码,最后经过本人不懈努力,终于全部解决了,现在分享给大家我的方法。 乱码的原因是各个地方用的编码格式不统一,所以把他们设成统一的utf8. 1.电脑的编码格式 开始-设置-时间和语言-语言和区域 管理语言设置-更改系统区域设置-勾选Bata版:使用utf8-确定-然后按指示重启 2.vscode

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓