三角形最小路径和[中等]

2024-08-21 13:04
文章标签 中等 路径 最小 三角形

本文主要是介绍三角形最小路径和[中等],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

优质博文:IT-BLOG-CN
在这里插入图片描述

一、题目

给定一个三角形triangle,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标ii + 1

示例 1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
2
3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为11(即,2 + 3 + 5 + 1 = 11)。

示例 2:
输入:triangle = [[-10]]
输出:-10

1 <= triangle.length <= 200
triangle[0].length == 1
triangle[i].length == triangle[i - 1].length + 1
-104 <= triangle[i][j] <= 104

进阶:你可以只使用O(n)的额外空间(n为三角形的总行数)来解决这个问题吗?

二、代码

本题是一道非常经典且历史悠久的动态规划题,其作为算法题出现,最早可以追溯到 1994 年的 IOI(国际信息学奥林匹克竞赛)的 The Triangle。时光飞逝,经过 20 多年的沉淀,往日的国际竞赛题如今已经变成了动态规划的入门必做题,不断督促着我们学习和巩固算法。

在本题中,给定的三角形的行数为 n,并且第 i 行(从 0 开始编号)包含了 i+1 个数。如果将每一行的左端对齐,那么会形成一个等腰直角三角形,如下所示:

[2]
[3,4]
[6,5,7]
[4,1,8,3]

方法一:动态规划

思路与算法

我们用 f[i][j] 表示从三角形顶部走到位置 (i,j) 的最小路径和。这里的位置 (i,j) 指的是三角形中第 i 行第 j 列(均从 0 开始编号)的位置。

由于每一步只能移动到下一行「相邻的节点」上,因此要想走到位置 (i,j),上一步就只能在位置 (i−1,j−1) 或者位置 (i−1,j)。我们在这两个位置中选择一个路径和较小的来进行转移,状态转移方程为:

f[i][j]=min(f[i−1][j−1],f[i−1][j])+c[i][j]
其中 c[i][j] 表示位置 (i,j) 对应的元素值。

注意第 i 行有 i+1 个元素,它们对应的 j 的范围为 [0,i]。当 j=0 或 j=i 时,上述状态转移方程中有一些项是没有意义的。例如当 j=0 时,f[i−1][j−1] 没有意义,因此状态转移方程为:

f[i][0]=f[i−1][0]+c[i][0]
即当我们在第 i 行的最左侧时,我们只能从第 i−1 行的最左侧移动过来。当 j=i 时,f[i−1][j] 没有意义,因此状态转移方程为:

f[i][i]=f[i−1][i−1]+c[i][i]
即当我们在第 i 行的最右侧时,我们只能从第 i−1 行的最右侧移动过来。

最终的答案即为 f[n−1][0] 到 f[n−1][n−1] 中的最小值,其中 n 是三角形的行数。

细节

状态转移方程的边界条件是什么?由于我们已经去除了所有「没有意义」的状态,因此边界条件可以定为:

f[0][0]=c[0][0]
即在三角形的顶部时,最小路径和就等于对应位置的元素值。这样一来,我们从 1 开始递增地枚举 i,并在 [0,i] 的范围内递增地枚举 j,就可以完成所有状态的计算。

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[][] f = new int[n][n];f[0][0] = triangle.get(0).get(0);for (int i = 1; i < n; ++i) {f[i][0] = f[i - 1][0] + triangle.get(i).get(0);for (int j = 1; j < i; ++j) {f[i][j] = Math.min(f[i - 1][j - 1], f[i - 1][j]) + triangle.get(i).get(j);}f[i][i] = f[i - 1][i - 1] + triangle.get(i).get(i);}int minTotal = f[n - 1][0];for (int i = 1; i < n; ++i) {minTotal = Math.min(minTotal, f[n - 1][i]);}return minTotal;}
}

时间复杂度: O(n ^ 2),其中n是三角形的行数。
空间复杂度: O(n ^ 2)。我们需要一个n∗n的二维数组存放所有的状态。

方法二:动态规划 + 空间优化

思路与算法

在题目描述中的「进阶」部分,提到了可以将空间复杂度优化至 O(n)。

我们回顾方法一中的状态转移方程:

f[i][j]= f[i−1][0]+c[i][0],j=0
f[i][j]=f[i−1][i−1]+c[i][i],j=i
f[i][j]=min(f[i−1][j−1],f[i−1][j])+c[i][j],otherwise

可以发现,f[i][j] 只与 f[i−1][…] 有关,而与 f[i−2][…] 及之前的状态无关,因此我们不必存储这些无关的状态。具体地,我们使用两个长度为 n 的一维数组进行转移,将 i 根据奇偶性映射到其中一个一维数组,那么 i−1 就映射到了另一个一维数组。这样我们使用这两个一维数组,交替地进行状态转移。

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[][] f = new int[2][n];f[0][0] = triangle.get(0).get(0);for (int i = 1; i < n; ++i) {int curr = i % 2;int prev = 1 - curr;f[curr][0] = f[prev][0] + triangle.get(i).get(0);for (int j = 1; j < i; ++j) {f[curr][j] = Math.min(f[prev][j - 1], f[prev][j]) + triangle.get(i).get(j);}f[curr][i] = f[prev][i - 1] + triangle.get(i).get(i);}int minTotal = f[(n - 1) % 2][0];for (int i = 1; i < n; ++i) {minTotal = Math.min(minTotal, f[(n - 1) % 2][i]);}return minTotal;}
}

上述方法的空间复杂度为 O(n),使用了 2n 的空间存储状态。我们还可以继续进行优化吗?

答案是可以的。我们从 i 到 0 递减地枚举 j,这样我们只需要一个长度为 n 的一维数组 f,就可以完成状态转移。

为什么只有在递减地枚举 j 时,才能省去一个一维数组?当我们在计算位置 (i,j) 时,f[j+1] 到 f[i] 已经是第 i 行的值,而 f[0] 到 f[j] 仍然是第 i−1 行的值。此时我们直接通过

f[j]=min(f[j−1],f[j])+c[i][j]
进行转移,恰好就是在 (i−1,j−1) 和 (i−1,j) 中进行选择。但如果我们递增地枚举 j,那么在计算位置 (i,j) 时,f[0] 到 f[j−1] 已经是第 i 行的值。如果我们仍然使用上述状态转移方程,那么是在 (i,j−1) 和 (i−1,j) 中进行选择,就产生了错误。

这样虽然空间复杂度仍然为 O(n),但我们只使用了 n 的空间存储状态,减少了一半的空间消耗。

class Solution {public int minimumTotal(List<List<Integer>> triangle) {int n = triangle.size();int[] f = new int[n];f[0] = triangle.get(0).get(0);for (int i = 1; i < n; ++i) {f[i] = f[i - 1] + triangle.get(i).get(i);for (int j = i - 1; j > 0; --j) {f[j] = Math.min(f[j - 1], f[j]) + triangle.get(i).get(j);}f[0] += triangle.get(i).get(0);}int minTotal = f[0];for (int i = 1; i < n; ++i) {minTotal = Math.min(minTotal, f[i]);}return minTotal;}
}

时间复杂度: O(n ^ 2),其中 n 是三角形的行数。
空间复杂度: O(n)。

这篇关于三角形最小路径和[中等]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093231

相关文章

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Python中Windows和macOS文件路径格式不一致的解决方法

《Python中Windows和macOS文件路径格式不一致的解决方法》在Python中,Windows和macOS的文件路径字符串格式不一致主要体现在路径分隔符上,这种差异可能导致跨平台代码在处理文... 目录方法 1:使用 os.path 模块方法 2:使用 pathlib 模块(推荐)方法 3:统一使

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D