深入WEP密码破解原理

2024-08-21 01:38
文章标签 深入 原理 破解 密码 wep

本文主要是介绍深入WEP密码破解原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先看看WEP 加密 ,解密的流程图
  \
     WEP加密算法实际上是利用RC4流密码算法作为伪随机数产生器,将由初始矢量IV和WEP密钥组合而成的种子生成WEP密钥流(图中的KSA和PRGA部分),再由该密钥流与WEP帧数据负载进行异或运算来完成加密运算.
    RC4流密码是面向字节的,在算法过程中只是用了置换的方法,按照图中分成的两个部分,其C代码如下
    KSA部分:
[cpp] view plaincopy
int i,j = 0; 
for (i = 0; i < 256; i++) 

    s[i] = i;  

for (i = 0; i < 256; i++) 

    k[i] = key[i % 8];//针对64bit的WEP加密,128bit的为[i % 16] 

for (i = 0; i < 256; i++) 

    j = (j + s[i] + k[i]) % 256; 
        Swap(s[i], s[j]);//进行置换 

 
  
其中s[256]为状态列,k[256]为密钥列,key[8]为64位的密钥,状态列初始化为{0,1,2,3, , ,255},密钥列按照提供的密钥8字节重复填充至256字节满,通过置换,生成了一个状态列用以生成密钥流.
PRGA部分(只生成256个字节的密钥流):
[cpp] view plaincopy
for (i = 0, j = 0, LengthofKeyStream = 0; LengthofKeyStream < 256; LengthofKeyStream++) 
    { 
        i = (i + 1) % 256; 
        j = (j + s[i]) % 256; 
        Swap(s[i], s[j]); 
        keystream[LengthofKeyStream] = s[(s[i] + s[j]) % 256]; 
    } 
 
  
至此,我们就有了一个可以进行异或加密的密钥流keystream[256].在WEP加密当中应该是根据数据data的长度来调整需要得到的密钥流的长度,这里做了简单的处理.
在对使用WEP加密的无线网络抓包的时候,由于ARP包和IP包明文的第一字节是802.2头标(0xAA),这样我们就有了数据第一字节的明文(0xAA),同时我们也有了密文的第一字节,当将这两个字节进行异或的时候,我们可以得到keystream[0],也就是伪随机生成序列的第一字节,现在通过对这第一个字节进行分析,看看能否逆推出某个密钥字节.
根据PRGA部分代码,执行第一次循环时生成keystream[0],初始条件i=0,j=0,按流程走下来,最后可知keystream[0]=s[s[1]+s[s[1]]],假设s[1]的值为X,s[s[1]](即s[X])的值为Y, s[s[1]+s[s[1]]](即s[X+Y])的值为Z,则如图
  \
  
由此可以看出,keystream[0]的值受3个值的影响,分别是X,Y,和Z.这3个值是在KSA算法当中通过置换形成的.
[cpp] view plaincopy
for (i = 0; i < 256; i++) 

    j = (j + s[i] + k[i]) % 256; 
        Swap(s[i], s[j]);//进行置换 

 
    注意到,当生成供给PRGA使用的状态列的时候,进行的KSA循环是256次,根据大量的数据统计表明[1],在经过i(i>=1)次KSA循环之后,X,Y,Z三者不参与接下来置换的概率大概是0.05大一点,也就是100次里面大概有5次,X,Y,Z再之后的循环当中是保持不变的,一直保持在这个位置没有被置换,这样最后利用这个状态列生成的keystream[0]的值就是Z,这种状态称为断然状态(Resolved Condition),如果用一个处于断然状态的密钥流进行异或加密,我们就能够从中得到与密钥相关的一些信息,利用已知的密钥流第一个字节keystream[0]推算出密钥当中的一个字节.
举例来说,现在现实的情况是这样的.我们知道的初始向量IV为3个字节,即密钥的结构为key[8]={IV[0], IV[1], IV[2], USER[0], USER[1], USER[2], USER[3], USER[4]},USER[]表示用户自己定义的5个字节密钥.加上IV的3个字节就是8个字节64bit,回过头看KSA算法中的置换循环:
[cpp] view plaincopy
for (i = 0; i < 256; i++) 

    j = (j + s[i] + k[i]) % 256; 
        Swap(s[i], s[j]);//进行置换 

 
 
  
    由于i从0开始,j的值与s[i]的值和k[i]的值相关,s[i]的初始值我们知道,s[i]=i,那么现在知道了key[0],key[1],key[2]这3个值,我们就可以计算得到3个状态列(即经过3次循环时s[]的值),我们用s_n[](如s_1[])表示i=n时进行置换后的状态列,用j_n(如j_1)表示i=n时j的值,也就是说,我们可以根据已知的条件推算出s_0[],s_1[],s_2[],j_0,j_1,j_2,假设在i=3时,状态列进入断然状态,那么根据前面的分析,此时有keystream[0]=s_3[s_3[1]+s_3[s_3[1]]],若此IV满足下面两个条件:1.s_3[1]<3;2.s_3[1]+s_3[s_3[1]]=3.此时就有keystream[0]=s_3[3],由于s_3[3]是由s_2[j_3]置换而来的(Swap(s[i], s[j]);)[2],j_3=j_2+s_2[3]+k[3],k[3]也就是key[3],则k[3]=j_3-j_2-s_2[3],根据等式,j_3通过在s_2[]中查找keystream[0]的值得到其索引即是j_3,j_2可以通过计算得到,s_2[3]已知,这样就可以计算出k[3]的值,有一定的概率是正确的,对于k[4]的取得方式也是以此类推,建立在计算出的k[3]值的基础上.
考虑现在具有特殊形式的的IV={3, 255, N},N表示任意数,用一个表格表示s状态列在i各个值时候的情况:
初始状态i=0,j=0
S初始
0
1
2
3

5+N

255
i=0,j_0=3
s_0
3
1
2
0

5+N

255
i=1,j_1=3
s_1
3
0
2
1

5+N

255
i=2,j_2=5+N
s_2
3
0
5+N
1

2

255
i=3,j_3=6+N+k[3]
s_3
3
0
5+N















 
由上表可以得知,s_3[3]=s_2[6+N+k[3]]=s_2[5+N+1+K[3]]=s_2[j_2+s_2[3]+k[3]],由此可以求出k[3]的值.特殊形式IV只要满足那两个条件即可,不一定是给出的{3, 255, N}的形式.

求出了k[3]之后可以进一步的求的k[4],以此类推直到求得k[7],由于状态列进入断然状态存在一定概率,因此通过大量的数据包进行推算,然后根据得到的推算密钥字节进行统计,选取出现概率高的推算密钥字节进行组合,之后再进行验证即可得到WEP的密钥.


转载于:http://www.2cto.com/kf/201204/126344.html

  

这篇关于深入WEP密码破解原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1091758

相关文章

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Java中的密码加密方式

《Java中的密码加密方式》文章介绍了Java中使用MD5算法对密码进行加密的方法,以及如何通过加盐和多重加密来提高密码的安全性,MD5是一种不可逆的哈希算法,适合用于存储密码,因为其输出的摘要长度固... 目录Java的密码加密方式密码加密一般的应用方式是总结Java的密码加密方式密码加密【这里采用的

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

mysql重置root密码的完整步骤(适用于5.7和8.0)

《mysql重置root密码的完整步骤(适用于5.7和8.0)》:本文主要介绍mysql重置root密码的完整步骤,文中描述了如何停止MySQL服务、以管理员身份打开命令行、替换配置文件路径、修改... 目录第一步:先停止mysql服务,一定要停止!方式一:通过命令行关闭mysql服务方式二:通过服务项关闭