如何理解redis是单线程的

2024-06-24 12:12
文章标签 redis 理解 单线程

本文主要是介绍如何理解redis是单线程的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在文章开头

在面试时我们经常会问到这样一道题

你刚刚说redis是单线程的,那你能不能告诉我它是如何基于单个线程完成指令接收与连接接入的?

这时候我们经常会得到沉默,所以对于这道题,笔者会直接通过3.0.0源码分析的角度来剖析一下redis单线程的设计与实现。

在这里插入图片描述

Hi,我是 sharkChili ,是个不断在硬核技术上作死的 java coder ,是 CSDN的博客专家 ,也是开源项目 Java Guide 的维护者之一,熟悉 Java 也会一点 Go ,偶尔也会在 C源码 边缘徘徊。写过很多有意思的技术博客,也还在研究并输出技术的路上,希望我的文章对你有帮助,非常欢迎你关注我的公众号: 写代码的SharkChili

因为近期收到很多读者的私信,所以也专门创建了一个交流群,感兴趣的读者可以通过上方的公众号获取笔者的联系方式完成好友添加,点击备注 “加群” 即可和笔者和笔者的朋友们进行深入交流。

在这里插入图片描述

详解redis的单线程模型

单线程处理核心任务

当我们通过./redis-server启动redis时,如果我们配置了后台启动,那么shell进程线程就会调用系统函数即fork方法创建一个子进程,再通过execve方法将子进程主体替换成redis可执行文件也就是我们的redis-server,而子进程执行时会保持从父进程集成过来的标准输入和输出,最后redis就会调用main方法开始执行自己的启动逻辑了。

在这里插入图片描述

到这为止,我们不难看出,在启动阶段redis的启动并不是多线程的,它会根据我们的配置来决定启动逻辑,以我们上文所说的后台启动,它本质是通过父进程fork的方式完成创建与初始化的,这一点我们也可以直接从redis的main方法印证:

int main(int argc, char **argv) {//命令参数解析与初始化//......//如果配置后台启动,则调用daemonize从父进程中fork出来执行if (server.daemonize) daemonize();//......
}

我们步入daemonize方法,可以看到其内部如果子进程fork成功,后续的标准输入、输出、错误都会重定向到/dev/null,由此后的各项工作也都是我们的redis server的主线程进行负责处理:

void daemonize(void) {int fd;//fork返回0说明fork成功,创建新会话,然后父进程exit(0)直接退出if (fork() != 0) exit(0); /* parent exits */setsid(); /* create a new session *//* Every output goes to /dev/null. If Redis is daemonized but* the 'logfile' is set to 'stdout' in the configuration file* it will not log at all. *///将标准输入、输出、错误重定向写到/dev/null中,由此和终端分离if ((fd = open("/dev/null", O_RDWR, 0)) != -1) {dup2(fd, STDIN_FILENO);dup2(fd, STDOUT_FILENO);dup2(fd, STDERR_FILENO);if (fd > STDERR_FILENO) close(fd);}
}

后续的主线程的socket就会注册到epoll中,通过非阻塞调用epoll函数获取就绪的连接和指令完成与多个客户端的交互:

在这里插入图片描述

而上述所说这种工作模式,也就是我们的aeMain方法,这里笔者也给出的对应的的代码实现,如下所示,aeMain的本质逻辑就是调用无限循环,在循环中调用aeApiPollepoll非阻塞轮询获取就绪的事件并交给对应的读写事件处理器(rfileProc/wfileProc)进行处理:

//无限循环调用aeProcessEvents处理读写事件
void aeMain(aeEventLoop *eventLoop) {eventLoop->stop = 0;while (!eventLoop->stop) {if (eventLoop->beforesleep != NULL)eventLoop->beforesleep(eventLoop);aeProcessEvents(eventLoop, AE_ALL_EVENTS);}
}int aeProcessEvents(aeEventLoop *eventLoop, int flags)
{//......//通过epoll完成非阻塞调用numevents = aeApiPoll(eventLoop, tvp);//遍历拿到的事件将其交给读写处理器处理for (j = 0; j < numevents; j++) {//解析出该文件对应的类型aeFileEvent *fe = &eventLoop->events[eventLoop->fired[j].fd];int mask = eventLoop->fired[j].mask;int fd = eventLoop->fired[j].fd;int rfired = 0;//如果事件fe是读事件则交给rfileProcif (fe->mask & mask & AE_READABLE) {rfired = 1;fe->rfileProc(eventLoop,fd,fe->clientData,mask);}//如果事件包含写标志,则交给wfileProc处理器处理if (fe->mask & mask & AE_WRITABLE) {if (!rfired || fe->wfileProc != fe->rfileProc)fe->wfileProc(eventLoop,fd,fe->clientData,mask);}processed++;}}//......//返回处理事件数return processed; /* return the number of processed file/time events */
}

多线程执行IO事件

截至到上述的片段,redis大体上我们可以认为是单线程执行,但是在3.0.0之后源码中,为了避免某些IO任务对主线程的执行效率的影响,redis还是创建了一些异步线程处理这些任务。
如下图所示,我们以aof为例,redis主线程会通过定时任务的方法serverCron会按照用户的配置检查当前是否需要进行aof写入,如果需要则通过bioCreateBackgroundJob提交一个任务到AOF异步刷盘的任务列表中,此时redis创建的io线程就会无限循环调用bioProcessBackgroundJobs从该列表中取出自己绑定的任务进行异步消费,通过这种简单的多线程模式,保证了耗时的IO操作不会阻塞主线程:

在这里插入图片描述

这里我们先给出对应的事件宏定义,可以看到事件总数为REDIS_BIO_NUM_OPS 即2,然后0是文件关闭事件,1的AOF异步刷盘事件,通过这样的顺序完成了事件的类型码和总量的定义:

/* Background job opcodes */
#define REDIS_BIO_CLOSE_FILE    0 /* Deferred close(2) syscall. */
#define REDIS_BIO_AOF_FSYNC     1 /* Deferred AOF fsync. */
#define REDIS_BIO_NUM_OPS       2

对应的这些线程的初始化工作我们可以在main方法调用的initServer中可以看到这样一段调用,其内部的调用bioInit本质就是完成上述IO任务的线程的创建:

void initServer(void) {int j;//......//创建bio任务线程bioInit();
}

bioInit它会初始化2个线程以及栈大小(最大不会超过4M),为每个线程各自分配一个队列,分配队列这一步就会按照循环遍历得到的值进行分配,遍历时用REDIS_BIO_NUM_OPS作为范围控制,遍历到0的处理文件关闭事件,1则是AOF刷盘事件。
完成事件类型队列分配之后,redis会为每个线程分配消费任务的方法指针bioProcessBackgroundJobs,后续的线程的任务消费和处理都是调用这个方法执行的:

void bioInit(void) {pthread_attr_t attr;pthread_t thread;size_t stacksize;int j;//循环2次,刚刚好对应2个事件即0是文件关闭事件、1是aof刷盘事件for (j = 0; j < REDIS_BIO_NUM_OPS; j++) {//互斥数组初始化pthread_mutex_init(&bio_mutex[j],NULL);//条件数组初始化pthread_cond_init(&bio_condvar[j],NULL);//bio任务数组初始化,每个数组元素都是一个任务列表bio_jobs[j] = listCreate();//表示每种任务列表待处理的任务数为0bio_pending[j] = 0;}//设置线程最大的栈属性大小,默认为1,若小于REDIS_THREAD_STACK_SIZE即4M则乘2pthread_attr_init(&attr);pthread_attr_getstacksize(&attr,&stacksize);if (!stacksize) stacksize = 1; while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;pthread_attr_setstacksize(&attr, stacksize);//创建线程并,为每一个线程分配一个任务列表for (j = 0; j < REDIS_BIO_NUM_OPS; j++) {//循环两次 j为0即代表文件关闭事件、1是aof刷盘事件,这个arg会作为事件类型绑定到线程pthread上void *arg = (void*)(unsigned long) j;//调用pthread_create完成线程属性初始化和事件类型的绑定if (pthread_create(&thread,&attr,bioProcessBackgroundJobs,arg) != 0) {redisLog(REDIS_WARNING,"Fatal: Can't initialize Background Jobs.");exit(1);}bio_threads[j] = thread;}
}

这里我们也给出bioProcessBackgroundJobs逻辑可以看到,每个线程调用该方法时,会在无限循环中根据任务的type按需消费处理:

void *bioProcessBackgroundJobs(void *arg) {struct bio_job *job;//每个线程都会根据自己传入的arg决定任务的type,0为文件关闭事件、1为aof刷盘事件unsigned long type = (unsigned long) arg;sigset_t sigset;//......//按照类型到bio_jobs取任务执行while(1) {listNode *ln;/* The loop always starts with the lock hold. */if (listLength(bio_jobs[type]) == 0) {pthread_cond_wait(&bio_condvar[type],&bio_mutex[type]);continue;}//取出自己需要处理的类型的队列任务ln = listFirst(bio_jobs[type]);job = ln->value;/* It is now possible to unlock the background system as we know have* a stand alone job structure to process.*/pthread_mutex_unlock(&bio_mutex[type]);//线程按照自己的类型进行消费if (type == REDIS_BIO_CLOSE_FILE) {close((long)job->arg1);} else if (type == REDIS_BIO_AOF_FSYNC) {aof_fsync((long)job->arg1);} else {redisPanic("Wrong job type in bioProcessBackgroundJobs().");}//完成后释放任务对象zfree(job);//线程解锁 任务移除pthread_mutex_lock(&bio_mutex[type]);listDelNode(bio_jobs[type],ln);bio_pending[type]--;}
}

了解的任务消费的源码之后,我们再来看看任务的投递的逻辑,我们以aof文件刷盘的任务为例,从定时任务函数serverCron,其内部会判断rdb或者aofpid不为-1,若不为-1则说明这两个其中一个重写任务完成了,直接内部逻辑,获取当前子进程的pid是否是aof子进程的,如果是则步入backgroundRewriteDoneHandler方法进行任务提交到任务队列中:

在这里插入图片描述

这里我们直接从serverCron为入口查看redis定时任务方法逻辑可以看到其内部会查看rdb_child_pid 或者aof_child_pid 是否为-1,判断是否有持久化任务完成了,若发现aof_child_pid 为-1且wait3获取到的pid也为aof的则调用backgroundRewriteDoneHandler提交异步刷盘任务:

int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {int j;REDIS_NOTUSED(eventLoop);REDIS_NOTUSED(id);REDIS_NOTUSED(clientData);//......//检查后台的aof重写进程是否结束,若结束的步入循环if (server.rdb_child_pid != -1 || server.aof_child_pid != -1) {int statloc;pid_t pid;//获取当前子进程pidif ((pid = wait3(&statloc,WNOHANG,NULL)) != 0) {//......if (pid == server.rdb_child_pid) {//......} else if (pid == server.aof_child_pid) {//如果pid 为aof_child_pid则调用backgroundRewriteDoneHandler提交任务到aof队列中backgroundRewriteDoneHandler(exitcode,bysignal);} else {redisLog(REDIS_WARNING,"Warning, detected child with unmatched pid: %ld",(long)pid);}updateDictResizePolicy();}} else {//......}//......
}

步入backgroundRewriteDoneHandler可以看到,如果AOF刷盘策略是AOF_FSYNC_EVERYSEC即异步刷盘则会调用aof_background_fsync进行文件刷盘,而该方法内部的逻辑就是调用我们上文的所说的提交后台任务方法bioCreateBackgroundJob:

void backgroundRewriteDoneHandler(int exitcode, int bysignal) {//......if (server.aof_fd == -1) {/* AOF disabled, we don't need to set the AOF file descriptor* to this new file, so we can close it. */close(newfd);} else {/* AOF enabled, replace the old fd with the new one. */oldfd = server.aof_fd;server.aof_fd = newfd;if (server.aof_fsync == AOF_FSYNC_ALWAYS)aof_fsync(newfd);else if (server.aof_fsync == AOF_FSYNC_EVERYSEC)//如果是异步刷盘则将任务提交到对应的队列中aof_background_fsync(newfd);server.aof_selected_db = -1; /* Make sure SELECT is re-issued */aofUpdateCurrentSize();server.aof_rewrite_base_size = server.aof_current_size;/* Clear regular AOF buffer since its contents was just written to* the new AOF from the background rewrite buffer. */sdsfree(server.aof_buf);server.aof_buf = sdsempty();}server.aof_lastbgrewrite_status = REDIS_OK;//......} else if (!bysignal && exitcode != 0) {//......} else {//......}//......
}//调用bioCreateBackgroundJob提交任务到AOF刷盘队列中
void aof_background_fsync(int fd) {bioCreateBackgroundJob(REDIS_BIO_AOF_FSYNC,(void*)(long)fd,NULL,NULL);
}

小结

自此我们把redis中主线程和IO任务的线程都以图解和源码印证的方式分析完成了,以笔者的理解,设计者所说的redis是单线程的本质上的意思是说,对于核心的连接建立和指令处理是通过单个线程高效完成,而其余的一些非核心的IO耗时逻辑还是需要多线程来完成,希望对你有帮助。

我是 sharkchiliCSDN Java 领域博客专家开源项目—JavaGuide contributor,我想写一些有意思的东西,希望对你有帮助,如果你想实时收到我写的硬核的文章也欢迎你关注我的公众号: 写代码的SharkChili
因为近期收到很多读者的私信,所以也专门创建了一个交流群,感兴趣的读者可以通过上方的公众号获取笔者的联系方式完成好友添加,点击备注 “加群” 即可和笔者和笔者的朋友们进行深入交流。

在这里插入图片描述

参考

Linux内核学习笔记(4)-- wait、waitpid、wait3 和 wait4:https://www.cnblogs.com/tongye/p/9558320.html

这篇关于如何理解redis是单线程的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090112

相关文章

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python中操作Redis的常用方法小结

《Python中操作Redis的常用方法小结》这篇文章主要为大家详细介绍了Python中操作Redis的常用方法,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解一下... 目录安装Redis开启、关闭Redisredis数据结构redis-cli操作安装redis-py数据库连接和释放增

redis防止短信恶意调用的实现

《redis防止短信恶意调用的实现》本文主要介绍了在场景登录或注册接口中使用短信验证码时遇到的恶意调用问题,并通过使用Redis分布式锁来解决,具有一定的参考价值,感兴趣的可以了解一下... 目录1.场景2.排查3.解决方案3.1 Redis锁实现3.2 方法调用1.场景登录或注册接口中,使用短信验证码场

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Redis的Zset类型及相关命令详细讲解

《Redis的Zset类型及相关命令详细讲解》:本文主要介绍Redis的Zset类型及相关命令的相关资料,有序集合Zset是一种Redis数据结构,它类似于集合Set,但每个元素都有一个关联的分数... 目录Zset简介ZADDZCARDZCOUNTZRANGEZREVRANGEZRANGEBYSCOREZ