本文主要是介绍代码随想录——摆动序列(Leetcode376),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接
贪心
class Solution {public int wiggleMaxLength(int[] nums) {if(nums.length <= 1){return nums.length;}// 当前一对差值int cur = 0;// 前一对差值int pre = 0;// 峰值个数int res = 1;for(int i = 0; i < nums.length - 1; i++){cur = nums[i + 1] - nums[i];if(pre <= 0 && cur > 0 || pre >= 0 && cur < 0){res++;// 摆动变化时更新prepre = cur;} }return res;}
}
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
局部最优推出全局最优,并举不出反例,那么试试贪心!
(为方便表述,以下说的峰值都是指局部峰值)
实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)
这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点
在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])
,如果prediff < 0 && curdiff > 0
或者 prediff > 0 && curdiff < 0
此时就有波动就需要统计。
这是我们思考本题的一个大体思路,但本题要考虑三种情况:
情况一:上下坡中有平坡
在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0
,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0
。
如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0
也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。
所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)
,为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。
情况二:数组首尾两端
针对以上情形,result 初始为 1
(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0
,那么 result++
(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)
情况三:单调坡中有平坡
只需要在 这个坡度 摆动变化的时候,更新 prediff,这样 prediff 在单调区间有平坡的时候 就不会发生变化。
这篇关于代码随想录——摆动序列(Leetcode376)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!