WDF驱动开发-特定于KMDF的技术(一)

2024-06-24 08:28

本文主要是介绍WDF驱动开发-特定于KMDF的技术(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这部分的技术是一些零散的记录知识点,它们主要是在WDF框架中特定于KMDF的部分。

将内核模式驱动程序框架和非 PnP 驱动程序配合使用

如果要为不支持 即插即用 (PnP) 的设备编写驱动程序,则驱动程序必须:

  • 在 WDF_DRIVER_CONFIG 结构的 DriverInitFlags 成员中设置 WdfDriverInitNonPnpDriver 标志;
  • 提供 EvtDriverUnload 事件回调函数;
  • 创建仅表示控制设备对象的框架 设备对象;

如果设备不支持 PnP,则驱动程序 不提供EvtDriverDeviceAdd 回调函数。 相反,驱动程序必须确定其设备是否存在。

安装非 PnP 驱动程序

如果 KMDF 驱动程序支持Windows 10上的非即插即用 (PnP) 设备,请使用与非 PnP 驱动程序示例中所示相同的方法,但删除对 INF 文件和共同安装程序的引用。 例如,不需要以下内容:

#define NONPNP_INF_FILENAME  L"\\nonpnp.inf"
#define WDF_SECTION_NAME L"nonpnp.NT.Wdf"LoadWdfCoInstaller
UnloadWdfCoInstallerPFN_WDFPREDEVICEINSTALLEX pfnWdfPreDeviceInstallEx;
PFN_WDFPOSTDEVICEINSTALL   pfnWdfPostDeviceInstall;
PFN_WDFPREDEVICEREMOVE     pfnWdfPreDeviceRemove;
PFN_WDFPOSTDEVICEREMOVE   pfnWdfPostDeviceRemove;

对于非 PnP KMDF 驱动程序,只需调用 SCM API 来创建服务。 

保证向前推进 I/O 操作

某些驱动程序(例如系统分页设备的存储驱动程序)必须至少执行一些受支持的 I/O 操作,而不会失败,以避免丢失关键系统数据。 驱动程序故障的一个潜在原因是内存不足的情况。 如果框架或驱动程序无法分配足够的内存来处理 I/O 请求,则其中一个或另一个可能需要通过错误状态值 完成 I/O 请求来使 I/O 请求失败。

在版本 1.9 之前的 KMDF 版本中,如果框架无法为 I/O 请求数据包分配框架请求对象, I/O 管理器已发送到驱动程序的 I/O,框架始终会失败 I/O 请求。 为了使驱动程序能够在内存不足的情况下处理 I/O 请求,框架版本 1.9 及更高版本为 I/O 队列提供了 有保证的向前进度 功能。

此功能使框架和驱动程序能够分别为请求对象集和与请求相关的驱动程序上下文缓冲区预先分配内存。 仅当系统内存量较低时,框架和驱动程序才使用此预分配的内存。

保证向前进度的功能

通过使用框架保证的 I/O 队列向前进度,驱动程序可以:

  • 要求框架预先分配一组请求对象,以在内存不足的情况下用于特定的 I/O 队列;
  • 提供一个回调函数,用于预分配特定于请求的资源,驱动程序在内存不足的情况下从框架接收预分配的请求对象时可以使用这些资源;
  • 提供另一个回调函数,用于在 未检测到内存不足的情况时为 I/O 请求分配特定于驱动程序的资源。 如果此回调函数的分配由于内存不足而失败,它可以指示框架是否应使用其预分配的请求对象之一;
  • 指定哪些 I/O 请求需要使用预分配的请求对象。 选项包括为所有 IRP 使用预分配的对象、仅在分页 I/O 操作正在进行时使用它们,或让其他驱动程序回调函数检查每个 IRP 以确定是否使用预分配的对象;

如果驱动程序对其一个或多个 I/O 队列实现了有保证的向前进度,则驱动程序将能够更好地在内存不足的情况下成功 处理 I/O 请求 。 你可以为设备的默认 I/O 队列以及驱动程序通过调用 WdfDeviceConfigureRequestDispatching 配置的任何 I/O 队列实现有保证的向前进度。

只有当驱动程序和驱动程序的 I/O 目标 都实现有保证的前进进度时,框架的有保证向前进度功能才适用于驱动程序。 换句话说,如果驱动程序为设备实现有保证的向前进度,则设备驱动程序堆栈中的所有较低级别驱动程序也必须实现有保证的向前进度。

为 I/O 队列启用有保证的向前进度

若要为 I/O 队列启用有保证的向前进度,驱动程序会初始化 WDF_IO_QUEUE_FORWARD_PROGRESS_POLICY 结构,然后调用 WdfIoQueueAssignForwardProgressPolicy 方法。 如果驱动程序调用 WdfDeviceConfigureRequestDispatching 来配置 I/O 队列,则必须在调用 WdfIoQueueAssignForwardProgressPolicy 之前执行此操作。

当驱动程序调用 WdfIoQueueAssignForwardProgressPolicy 时,它可以指定以下三个事件回调函数,所有这些函数都是可选的:

  • EvtIoAllocateResourcesForReservedRequest:驱动程序的 EvtIoAllocateResourcesForReservedRequest 回调函数为框架在内存不足的情况下保留的请求对象分配和存储特定于请求的资源。框架每次创建保留请求对象时都会调用此回调函数。 驱动程序应为一个 I/O 请求分配特定于请求的资源,通常使用保留的请求对象的 上下文空间;
  • EvtIoAllocateRequestResources:驱动程序的 EvtIoAllocateRequestResources 回调函数分配特定于请求的资源以供立即使用。 在框架收到 IRP 并为 IRP 创建请求对象后,将立即调用它。如果回调函数分配资源的尝试失败,回调函数将返回错误状态值。 然后,框架删除新创建的请求对象,并使用其保留的请求对象之一。 反过来,驱动程序 的请求处理程序 使用其 EvtIoAllocateRequestResources 回调函数之前分配的特定于请求的资源;
  • EvtIoWdmIrpForForwardProgress:驱动程序的 EvtIoWdmIrpForForwardProgress 回调函数检查 IRP,并告知框架是使用 IRP 的保留请求对象,还是通过错误状态值完成 I/O 请求来使该请求失败;

仅当框架无法创建新的请求对象,并且你通过在驱动程序的 WDF_IO_QUEUE_FORWARD_PROGRESS_POLICY结构中 设置标志来指示, 希望驱动程序在内存不足的情况下检查 IRP 时,框架才会调用此回调函数。 换句话说,驱动程序可以评估每个 IRP,并确定它是否是即使在内存不足的情况下也必须处理的 IRP。

当驱动程序调用 WdfIoQueueAssignForwardProgressPolicy 时,它还指定你希望框架针对内存不足的情况预先分配的保留请求对象数。 可以选择适合你的设备和驱动程序的请求对象数。 为防止性能降低,驱动程序通常应指定一个数字,该数字近似于驱动程序和设备可以并行处理的 I/O 请求数。

但是,如果驱动程序调用 WdfIoQueueAssignForwardProgressPolicy 及其 EvtIoAllocateResourcesForReservedRequest 回调函数预先分配了过多的保留请求对象或过多特定于请求的资源内存,则驱动程序实际上可能会导致尝试处理的内存不足的情况。 应测试驱动程序和设备的性能,并包括低内存模拟,以确定要选择的最佳数字。

在 WdfIoQueueAssignForwardProgressPolicy 返回之前,框架会创建并保留驱动程序指定的请求对象数。 每次保留请求对象时,框架都会立即调用驱动程序的 EvtIoAllocateResourcesForReservedRequest 回调函数,以便在框架实际使用保留请求对象的情况下,驱动程序可以分配和保存特定于请求的资源。

当某个驱动程序 的请求处理程序 从 I/O 队列接收 I/O 请求时,它可以调用 WdfRequestIsReserved 方法,以确定请求对象是否是框架针对内存不足情况预先分配的请求对象。 如果此方法返回 TRUE,则驱动程序应使用其 EvtIoAllocateResourcesForReservedRequest 回调函数保留的资源。

如果框架使用其保留请求对象之一,则会在驱动程序完成请求后将对象返回到其保留对象集。 框架保存请求对象以及驱动程序通过调用 WdfDeviceInitSetRequestAttributes 或 WdfObjectAllocateContext 创建的任何上下文空间,以便在出现另一个内存不足的情况时重复使用。

框架和驱动程序支持如何保证向前推进

以下是驱动程序和框架为支持 I/O 队列的有保证向前进度而执行的步骤:

1. 驱动程序调用 WdfIoQueueAssignForwardProgressPolicy。

作为响应,框架分配并存储驱动程序指定的请求对象数。 如果驱动程序以前调用 了 WdfDeviceInitSetRequestAttributes,则每个分配包括 WdfDeviceInitSetRequestAttributes 指定的上下文空间。

此外,如果驱动程序提供了 EvtIoAllocateResourcesForReservedRequest 回调函数,则框架会在每次分配和存储请求对象时调用回调函数。

2. 框架接收 I/O 请求数据包 (IRP) I/O 管理器发送到驱动程序。

框架尝试为 IRP 分配请求对象。 如果驱动程序为请求类型创建的 I/O 队列支持保证向前进度,则下一步取决于分配是成功还是失败:

请求对象分配成功:如果驱动程序提供了 EvtIoAllocateRequestResources 回调函数,框架将调用它。 如果回调函数返回STATUS_SUCCESS,框架会将请求添加到 I/O 队列。 如果回调函数返回错误状态值,框架将删除它刚刚创建的请求对象,并使用其预分配的请求对象之一。 当驱动程序的请求处理程序收到请求对象时,它会确定请求对象是否已预先分配,因此是否应使用驱动程序的预分配资源。如果驱动程序 未 提供 EvtIoAllocateRequestResources 回调函数,框架会将请求添加到 I/O 队列,就像驱动程序未启用有保证的向前进度一样。

请求对象分配失败:框架接下来执行的操作取决于驱动程序为 WDF_IO_QUEUE_FORWARD_PROGRESS_POLICY 结构的 ForwardProgressReservedPolicy 成员提供的值。 此成员通知框架何时使用保留请求:始终,仅当 I/O 请求是分页 I/O 操作时,或仅当 EvtIoWdmIrpForwardProgress 回调函数指示应使用保留请求时。

在所有情况下,驱动程序的请求处理程序都可以调用 WdfRequestIsReserved 来确定框架是否使用了保留的请求对象。 如果是这样,驱动程序应使用其 EvtIoAllocateResourcesForReservedRequest 回调函数分配的请求资源。

保证向前进度方案

你正在为可能包含系统分页文件的存储设备编写驱动程序。 从分页文件读取操作和写入操作成功非常重要。

你决定为读取和写入操作创建单独的 I/O 队列,并为这两个 I/O 队列启用有保证的向前进度。 你决定为所有其他请求类型创建第三个 I/O 队列,但不启用有保证的向前进度。

驱动程序堆栈和设备能够并行处理四个写入操作,因此,在调用 WdfIoQueueAssignForwardForwardProgressPolicy 之前,请将 WDF_IO_QUEUE_FORWARD_PROGRESS_POLICY 结构的 TotalForwardProgressRequests 成员设置为 4。

你决定仅当驱动程序的设备是分页设备时才保证向前进度很重要,因此驱动程序将WDF_IO_QUEUE_FORWARD_PROGRESS_POLICY结构的 ForwardProgressReservedPolicy 成员设置为 WdfIoForwardProgressReservedPolicyPagingIO。

由于驱动程序需要每个读取请求和每个写入请求的框架内存对象,因此你决定驱动程序应预先分配一些内存对象,以便在内存不足的情况下用于调用 WdfIoTargetFormatRequestForRead 和 WdfIoTargetFormatRequestForWrite 。

因此,驱动程序为读取队列提供 EvtIoAllocateResourcesForReservedRequest 回调函数,为写入队列提供另一个回调函数。 每次框架调用其中一个回调函数时,回调函数都会调用 WdfMemoryCreate 并保存返回的对象句柄,以应对内存不足的情况。 因为回调函数接收预分配的请求对象的句柄,所以它可以将内存对象父级给请求对象。 DMA 设备的驱动程序也可能预先分配 框架 DMA 对象。

读取和写入队列 的请求处理程序 必须确定每个接收的请求对象是否为框架为内存不足的情况保留的对象。 请求处理程序可以调用 WdfRequestIsReserved,也可以将请求对象句柄与 EvtIoAllocateResourcesForReservedRequest 回调函数之前收到的句柄进行比较。

该驱动程序还为读取队列提供 EvtIoAllocateRequestResources 回调函数,并为写入队列提供另一个回调函数。 框架在收到来自 I/O 管理器的读取或写入请求并成功创建请求对象时调用其中一个回调函数。 其中每个回调函数调用 WdfMemoryCreate 为请求分配内存对象。 如果分配失败,回调函数将返回错误状态值,以通知框架刚刚出现内存不足的情况。 框架检测错误返回值,删除刚刚创建的请求对象,并使用其预分配的对象之一。

此驱动程序不提供 EvtIoWdmIrpForForwardProgress 回调函数,因为它不需要在框架将其添加到 I/O 队列之前检查单个读取或写入 IRP。

请记住,当驱动程序为设备实现有保证的向前进度时,设备驱动程序堆栈中的所有较低级别驱动程序也必须实现有保证的向前进度。

完成 I/O 请求时指定优先级提升

当驱动程序完成 I/O 请求时,它可以调用 WdfRequestCompleteWithPriorityBoost ,以指定系统用于提高请求 I/O 操作的线程的运行时优先级的值。

如果驱动程序调用 WdfRequestComplete 或 WdfRequestCompleteWithInformation 而不是 WdfRequestCompleteWithPriorityBoost,框架将使用基于设备类型的默认优先级提升值。 下表列出了框架使用的默认优先级提升值。 设备类型和优先级提升常量在 Wdm.h 中定义。

设备类型默认优先级提升
FILE_DEVICE_UNDEFINEDIO_NO_INCREMENT
FILE_DEVICE_BEEPIO_NO_INCREMENT
FILE_DEVICE_CD_ROMIO_CD_ROM_INCREMENT
FILE_DEVICE_CD_ROM_FILE_SYSTEMIO_CD_ROM_INCREMENT
FILE_DEVICE_CONTROLLERIO_NO_INCREMENT
FILE_DEVICE_DATALINKIO_NO_INCREMENT
FILE_DEVICE_DFSIO_NO_INCREMENT
FILE_DEVICE_DISKIO_DISK_INCREMENT
FILE_DEVICE_DISK_FILE_SYSTEMIO_DISK_INCREMENT
FILE_DEVICE_FILE_SYSTEMIO_NO_INCREMENT
FILE_DEVICE_INPORT_PORTIO_NO_INCREMENT
FILE_DEVICE_KEYBOARDIO_KEYBOARD_INCREMENT
FILE_DEVICE_MAILSLOTIO_MAILSLOT_INCREMENT
FILE_DEVICE_MIDI_INIO_SOUND_INCREMENT
FILE_DEVICE_MIDI_OUTIO_SOUND_INCREMENT
FILE_DEVICE_MOUSEIO_MOUSE_INCREMENT
FILE_DEVICE_MULTI_UNC_PROVIDERIO_NO_INCREMENT
FILE_DEVICE_NAMED_PIPEIO_NAMED_PIPE_INCREMENT
FILE_DEVICE_NETWORKIO_NETWORK_INCREMENT
FILE_DEVICE_NETWORK_BROWSERIO_NETWORK_INCREMENT
FILE_DEVICE_NETWORK_FILE_SYSTEMIO_NETWORK_INCREMENT
FILE_DEVICE_NULLIO_NO_INCREMENT
FILE_DEVICE_PARALLEL_PORTIO_PARALLEL_INCREMENT
FILE_DEVICE_PHYSICAL_NETCARDIO_NETWORK_INCREMENT
FILE_DEVICE_PRINTERIO_NO_INCREMENT
FILE_DEVICE_SCANNERIO_NO_INCREMENT
FILE_DEVICE_SERIAL_MOUSE_PORTIO_SERIAL_INCREMENT
FILE_DEVICE_SERIAL_PORTIO_SERIAL_INCREMENT
FILE_DEVICE_SCREENIO_VIDEO_INCREMENT
FILE_DEVICE_SOUNDIO_SOUND_INCREMENT
FILE_DEVICE_STREAMSIO_SOUND_INCREMENT
FILE_DEVICE_TAPEIO_NO_INCREMENT
FILE_DEVICE_TAPE_FILE_SYSTEMIO_NO_INCREMENT
FILE_DEVICE_TRANSPORTIO_NO_INCREMENT
FILE_DEVICE_UNKNOWNIO_NO_INCREMENT
FILE_DEVICE_VIDEOIO_VIDEO_INCREMENT
FILE_DEVICE_VIRTUAL_DISKIO_DISK_INCREMENT
FILE_DEVICE_WAVE_INIO_SOUND_INCREMENT
FILE_DEVICE_WAVE_OUTIO_SOUND_INCREMENT
FILE_DEVICE_8042_PORTIO_KEYBOARD_INCREMENT
FILE_DEVICE_NETWORK_REDIRECTORIO_NETWORK_INCREMENT
FILE_DEVICE_BATTERYIO_NO_INCREMENT
FILE_DEVICE_BUS_EXTENDERIO_NO_INCREMENT
FILE_DEVICE_MODEMIO_SERIAL_INCREMENT
FILE_DEVICE_VDMIO_NO_INCREMENT
FILE_DEVICE_MASS_STORAGEIO_DISK_INCREMENT
FILE_DEVICE_SMBIO_NETWORK_INCREMENT
FILE_DEVICE_KSIO_SOUND_INCREMENT
FILE_DEVICE_CHANGERIO_NO_INCREMENT
FILE_DEVICE_SMARTCARDIO_NO_INCREMENT
FILE_DEVICE_ACPIIO_NO_INCREMENT
FILE_DEVICE_DVDIO_NO_INCREMENT
FILE_DEVICE_FULLSCREEN_VIDEOIO_VIDEO_INCREMENT
FILE_DEVICE_DFS_FILE_SYSTEMIO_NO_INCREMENT
FILE_DEVICE_DFS_VOLUMEIO_NO_INCREMENT
FILE_DEVICE_SERENUMIO_SERIAL_INCREMENT
FILE_DEVICE_TERMSRVIO_NO_INCREMENT
FILE_DEVICE_KSECIO_NO_INCREMENT
FILE_DEVICE_FIPSIO_NO_INCREMENT
FILE_DEVICE_INFINIBANDIO_NO_INCREMENT

 

 

这篇关于WDF驱动开发-特定于KMDF的技术(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089629

相关文章

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C#图表开发之Chart详解

《C#图表开发之Chart详解》C#中的Chart控件用于开发图表功能,具有Series和ChartArea两个重要属性,Series属性是SeriesCollection类型,包含多个Series对... 目录OverviChina编程ewSeries类总结OverviewC#中,开发图表功能的控件是Char

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD