Linux网络编程之循环服务器

2024-06-24 07:32

本文主要是介绍Linux网络编程之循环服务器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.介绍

Linux网络循环服务器是指逐个处理客户端的连接,处理完一个连接后再处理下一个连接,是一个串行处理的方式,比较适合时间服务器,DHCP服务器.对于TCP服务器来说,主要阻塞在accept函数,等待客户端的连接。而对于UDP服务器来说,主要阻塞在recv函数.

2.循环服务器模型

TCP循环服务器:

算法如下: 

        socket(...);
        bind(...);
        listen(...);
        while(1)
        {
                accept(...);
                read(...);
                process(...);
                write(...);
                close(...);//关闭客户端连接
              
       }

     close(....);//关闭服务器连接

UDP循环服务器:

  算法如下: 

   socket(...)

   bind(....);

  while(1){

  recvfrom(....);

  process(...);

  sendto(....);

 close(....);//关闭客户端连接 

 }

 close(....);//关闭服务器连接


从上面的流程可以看出,TCP循环服务器在accept处阻塞一直等待客户端的到来,而UDP循环服务器在recv处阻塞,等待客户端发送数据.


3. 循环服务器的例子

下面的程序是一个时间服务器,客户端发出TIME时间请求,服务器将本地时间返回给客户端.

(1)TCP循环服务器

服务器:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <time.h>
#include <netinet/in.h>
/**
TCP循环服务器
在accept处阻塞等待客户端的连接,并处理请求
**/
#define PORT 8888
#define BUFFERSIZE 1024
#define LISTEN 10
int main(int argc,char*argv[]){
  int s;
  int ret;
  int len;
  int size;
  int sc;
  time_t now;
  char buffer[BUFFERSIZE];
  struct sockaddr_in server_addr,client_addr;
  //建立流式套接字
  s=socket(AF_INET,SOCK_STREAM,0);
  if(s<0){
   perror("socket error");
   return -1;
 }
 //将地址绑定到套接字上
 memset(&server_addr,0,sizeof(server_addr));
 server_addr.sin_family=AF_INET;
 server_addr.sin_addr.s_addr=htonl(INADDR_ANY);
 server_addr.sin_port=htons(PORT);
 ret=bind(s,(struct sockaddr*)&server_addr,sizeof(server_addr));
 if(ret<0){
   perror("bind error");
   return -1;
 }
//监听队列的长度
 listen(s,LISTEN);
 len=sizeof(client_addr);
//接受客户端的请求
while(1){
   sc=accept(s,(struct sockaddr*)&client_addr,&len);//等待客户端的连接,client_addr存放的是客户端的信息
   memset(buffer,0,BUFFERSIZE);
   size=recv(sc,buffer,BUFFERSIZE,0);//利用套接字描述符sc进行通信
  if(size<0){
     perror("recv error");
     break;
  }
else if(!strncmp(buffer,"TIME",4)){
  now=time(NULL);
  sprintf(buffer,"%24s",ctime(&now));
  send(sc,buffer,strlen(buffer),0);
}

  close(sc);//关闭本次通信的客户端连接

}

close(s);
return 0;

}


客户端:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <time.h>
#include <netinet/in.h>
/**
循环服务器客户端程序
**/
#define PORT 8888
#define BUFFERSIZE 1024
int main(int argc,char*argv[]){
 int s;
 int ret;
 int size;
 struct sockaddr_in server_addr;
 char buffer[BUFFERSIZE];
 s=socket(AF_INET,SOCK_STREAM,0);
 if(s<0){
  perror("socket error");
  return -1;
}
bzero(&server_addr,sizeof(server_addr));
//将地址结构绑定到套接字
server_addr.sin_family=AF_INET;
server_addr.sin_port=htons(PORT);
server_addr.sin_addr.s_addr=htonl(INADDR_ANY);
//连接服务器
 ret=connect(s,(struct sockaddr*)&server_addr,sizeof(server_addr));
 if(ret==-1){
  perror("connect error");
  return -1;
}
memset(buffer,0,BUFFERSIZE);
strcpy(buffer,"TIME");
size=send(s,buffer,strlen(buffer),0);
if(size<0){
  perror("send error");
  return -1;
}
memset(buffer,0,BUFFERSIZE);
size=recv(s,buffer,BUFFERSIZE,0);
if(size<0){
  perror("recv error");
  return;
}

printf("%s",buffer);
close(s);
return 0;
}

运行结果:

[root@localhost 14章服务器模式]# ./circle-tcpc14

Sat Feb 18 09:44:31 2012

(2)UDP循环服务器

服务器:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>
/**
UDP循环服务器
原理:服务器在recv函数与处理业务之间轮循处理
**/
#define PORT 8888
#define BUFFERSIZE 1024
int main(int argc,char*argv[]){
int s;
struct sockaddr_in server_addr,client_addr;//分别表示客户端地址与服务器端地址
time_t now;
int ret;
 int size;
char buffer[BUFFERSIZE];
//建立数报套接字
s=socket(AF_INET,SOCK_DGRAM,0);//数据报
if(s<0){
   perror("socket error");
  return -1;
}
//地址绑定
bzero(&server_addr,sizeof(server_addr));//地址结构清0
server_addr.sin_family=AF_INET;
server_addr.sin_addr.s_addr=htonl(INADDR_ANY);
server_addr.sin_port=htons(PORT);
ret=bind(s,(struct sockaddr*)&server_addr,sizeof(server_addr));
if(ret==-1){
   perror("bind error");
   return -1;
}
//数据报套接字没有流量控制所以没有监听listen,也没有三次握手,所以没有接受连接accept
while(1){
 memset(buffer,0,BUFFERSIZE);//清0
 int len=sizeof(client_addr);
 size=recvfrom(s,buffer,BUFFERSIZE,0,(struct sockaddr*)&client_addr,&len);
 if(size<=0){
   perror("recvfrom");
}else{
  if(!strncmp(buffer,"TIME",4)){//判断是否是合法数据
      memset(buffer,0,BUFFERSIZE);
      now=time(NULL);//获得当前时间
      sprintf(buffer,"%24s",ctime(&now));//ctime所指向的最后一个字符是\n
      sendto(s,buffer,strlen(buffer),0,(struct sockaddr*)&client_addr,len);//发送数据,第3项表示发送数据的长度
}
}
}
 close(s);
 return 0;
}

客户端:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <time.h>
#include <netinet/in.h>
/**
UDP客店端,客户端向服务器发送时间请求,服务器返回相应的时间
**/
#define PORT 8888
#define BUFFERSIZE 1024
int main(int argc,char*argv[]){
  int s;//套接字描述符
  int ret;//建立套接字的返回值
  int size;
  struct sockaddr_in server_addr;//地址结构
  int len;
  char buffer[BUFFERSIZE];
  s=socket(AF_INET,SOCK_DGRAM,0);//建立流式套接字 
  if(s<0){
    perror("socket error");
    return -1;
  }   
 bzero(&server_addr,sizeof(server_addr));
  server_addr.sin_family=AF_INET;
  server_addr.sin_addr.s_addr=htonl(INADDR_ANY);
  server_addr.sin_port=htons(PORT);
  memset(buffer,0,BUFFERSIZE);
  strcpy(buffer,"TIME");
 //向服务器发送数据
 size=sendto(s,buffer,strlen(buffer),0,(struct sockaddr*)&server_addr,sizeof(server_addr));
 if(size<0){
   perror("sendto error");
   return -1;
 }
 //从服务器接收数据
 len=sizeof(server_addr);
  size=recvfrom(s,buffer,BUFFERSIZE,0,(struct sockaddr*)&server_addr,&len);
 if(size<0){
   perror("recvfrom error");
  return -1;
 }
  //write(1,buffer,size);
  printf("%s\n",buffer);
 close(s);
 return 0;
}

运行结果:

[root@localhost 14章服务器模式]# ./circle-udpc14
Sat Feb 18 09:59:22 2012

总结:本文主要介绍了循环服务器的算法流程,并且给出了TCP与UDP循环服务器实例.


这篇关于Linux网络编程之循环服务器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089520

相关文章

linux生产者,消费者问题

pthread_cond_wait() :用于阻塞当前线程,等待别的线程使用pthread_cond_signal()或pthread_cond_broadcast来唤醒它。 pthread_cond_wait() 必须与pthread_mutex 配套使用。pthread_cond_wait()函数一进入wait状态就会自动release mutex。当其他线程通过pthread

Linux 安装、配置Tomcat 的HTTPS

Linux 安装 、配置Tomcat的HTTPS 安装Tomcat 这里选择的是 tomcat 10.X ,需要Java 11及更高版本 Binary Distributions ->Core->选择 tar.gz包 下载、上传到内网服务器 /opt 目录tar -xzf 解压将解压的根目录改名为 tomat-10 并移动到 /opt 下, 形成个人习惯的路径 /opt/tomcat-10

RedHat运维-Linux文本操作基础-AWK进阶

你不用整理,跟着敲一遍,有个印象,然后把它保存到本地,以后要用再去看,如果有了新东西,你自个再添加。这是我参考牛客上的shell编程专项题,只不过换成了问答的方式而已。不用背,就算是我自己亲自敲,我现在好多也记不住。 1. 输出nowcoder.txt文件第5行的内容 2. 输出nowcoder.txt文件第6行的内容 3. 输出nowcoder.txt文件第7行的内容 4. 输出nowcode

【Linux进阶】UNIX体系结构分解——操作系统,内核,shell

1.什么是操作系统? 从严格意义上说,可将操作系统定义为一种软件,它控制计算机硬件资源,提供程序运行环境。我们通常将这种软件称为内核(kerel),因为它相对较小,而且位于环境的核心。  从广义上说,操作系统包括了内核和一些其他软件,这些软件使得计算机能够发挥作用,并使计算机具有自己的特生。这里所说的其他软件包括系统实用程序(system utility)、应用程序、shell以及公用函数库等

2024.6.24 IDEA中文乱码问题(服务器 控制台 TOMcat)实测已解决

1.问题产生原因: 1.文件编码不一致:如果文件的编码方式与IDEA设置的编码方式不一致,就会产生乱码。确保文件和IDEA使用相同的编码,通常是UTF-8。2.IDEA设置问题:检查IDEA的全局编码设置和项目编码设置是否正确。3.终端或控制台编码问题:如果你在终端或控制台看到乱码,可能是终端的编码设置问题。确保终端使用的是支持你的文件的编码方式。 2.解决方案: 1.File -> S

【Altium】查找PCB上未连接的网络

【更多软件使用问题请点击亿道电子官方网站】 1、文档目标: PCB设计后期检查中找出没有连接的网络 应用场景:PCB设计后期,需要检查是否所有网络都已连接布线。虽然未连接的网络会有飞线显示,但是由于布线后期整板布线密度较高,虚连,断连的网络用肉眼难以轻易发现。用DRC检查也可以找出未连接的网络,如果PCB中DRC问题较多,查找起来就不是很方便。使用PCB Filter面板来达成目的相比DRC

零基础STM32单片机编程入门(一)初识STM32单片机

文章目录 一.概要二.单片机型号命名规则三.STM32F103系统架构四.STM32F103C8T6单片机启动流程五.STM32F103C8T6单片机主要外设资源六.编程过程中芯片数据手册的作用1.单片机外设资源情况2.STM32单片机内部框图3.STM32单片机管脚图4.STM32单片机每个管脚可配功能5.单片机功耗数据6.FALSH编程时间,擦写次数7.I/O高低电平电压表格8.外设接口

16.Spring前世今生与Spring编程思想

1.1.课程目标 1、通过对本章内容的学习,可以掌握Spring的基本架构及各子模块之间的依赖关系。 2、 了解Spring的发展历史,启发思维。 3、 对 Spring形成一个整体的认识,为之后的深入学习做铺垫。 4、 通过对本章内容的学习,可以了解Spring版本升级的规律,从而应用到自己的系统升级版本命名。 5、Spring编程思想总结。 1.2.内容定位 Spring使用经验

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

通信系统网络架构_2.广域网网络架构

1.概述          通俗来讲,广域网是将分布于相比局域网络更广区域的计算机设备联接起来的网络。广域网由通信子网于资源子网组成。通信子网可以利用公用分组交换网、卫星通信网和无线分组交换网构建,将分布在不同地区的局域网或计算机系统互连起来,实现资源子网的共享。 2.网络组成          广域网属于多级网络,通常由骨干网、分布网、接入网组成。在网络规模较小时,可仅由骨干网和接入网组成