poj 2391 Ombrophobic Bovines (网络流)

2024-06-24 06:48

本文主要是介绍poj 2391 Ombrophobic Bovines (网络流),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  这是一道很经典的网络流的题目。首先我们考虑假如我们的时间为无穷大。我们吧每个点拆成2个点 i和i' .。虚拟源点s和汇点t。对于每个点建边(s,i, a[i])  (i‘,t,ib[i]) 。 其中a[i]为给点有多少牛,b[i]为容量。i和j连通 建边 (i,j',inf);如果最大流==所有牛的个数,就可能装下所有的牛。那么现在我们考虑时间。假设最大时间为T.那么如果i到j的的最短时间>T,那么i的牛不可能达到j  。于是我们只用建立哪些在T时间内能到达的边。 所以总体思路就是2分时间,然后跑网络流。 这里为什么要拆点,如果不拆点会导致流量的传递,本来不在T时间内到的的也可能传递过去,不需要拆点。  还有一个主意额地方,这题用dinic()可能时间卡的比较紧,我目前还是用isap过的额,dinic一直Tle。

VIEW CODE

//#pragma comment(linker, "/STACK:102400000,102400000")#include<cstdio>
#include<cmath>
#include<queue>
#include<stack>
#include<string>
#include<cstring>
#include<iostream>
#include<map>
#include<vector>
#include<algorithm>
#include<stdlib.h>
#include<set>
#include<ctime>
#include<cmath>
#define eps 1e-8
#define ex 2.7182818284590452354
#define pi acos(-1.0)
#define inf 0x3fffffff
#define DC(n) printf("Case #%d:",++n)
#define SD(n) scanf("%d",&n)
#define SS(str) scanf("%s",str)
#define SDB(n) scanf("%lf",&n)
#define ll __int64
#define mm 1000000007
#define mmax  100010
using namespace std;
const ll INF=0x3fffffffffffffff;
struct edges
{int en;int cost;int next;
}edge[10000];
int point[300][2];
int p1[300];
int num1;
void init1()
{memset(p1,-1,sizeof p1);num1=0;
}
void add1(int st,int en,int cost)
{edge[num1].en=en;edge[num1].cost=cost;edge[num1].next=p1[st];p1[st]=num1++;
}int n,m;
struct node
{int en,val;int next;
}E[100010];
int p[500];
int num;
void init()
{memset(p,-1,sizeof p);num=0;
}
void add(int st,int en,int val)
{E[num].en=en;E[num].val=val;E[num].next=p[st];p[st]=num++;E[num].en=st;E[num].val=0;E[num].next=p[en];p[en]=num++;
}ll dis[210];
bool vis[510];
int q[510];
int cntq;
ll cost[210][210];
void spfa(int st)
{for(int i=1;i<=n;i++){dis[i]=INF;vis[i]=0;}cntq=0;q[++cntq]=st;vis[st]=1;dis[st]=0;while(cntq){int x=q[cntq];cntq--;vis[x]=0;for(int i=p1[x];i+1;i=edge[i].next){int  v=edge[i].en;ll val=edge[i].cost;if(dis[v]>dis[x]+val){dis[v]=dis[x]+val;if(!vis[v]){vis[v]=1;q[++cntq]=v;}}}}for(int i=1;i<=n;i++)cost[st][i]=dis[i];
}
void build(ll max_time)
{init();for(int i=1;i<=n;i++){add(i,i+n,point[i][1]);add(0,i,point[i][0]);add(i+n,2*n+1,point[i][1]);}for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){if(i!=j){if(cost[i][j]<=max_time)add(i,j+n,inf);}}}
}int h[510];
int vh[510];int find(int u,int  st,int en,int F)
{if(u==en)return F;int left=F;int tmp=en;for(int i=p[u];i+1;i=E[i].next){int v=E[i].en;int val=E[i].val;if(val>0){if(h[v]+1==h[u]){int d=min(left,val);d=find(v,st,en,d);left-=d;E[i].val-=d;E[i^1].val+=d;if(h[st]>=en+1)return F-left;if(!left)break;}if(h[v]<tmp)tmp=h[v];}}if(left==F){vh[ h[u] ]--;if(vh[h[u] ]==0)h[st]=en+1;h[u]=tmp+1;vh[ h[u] ]++;}return F-left;}int isap(int st,int en)
{memset(vh,0,sizeof vh);memset(h,0,sizeof h);int ans=0;vh[0]=en+1;while(h[st]<=en)ans+=find(st,st,en,inf);return ans;
}int main()
{while(scanf("%d %d",&n,&m)!=EOF){int sum=0;ll times=0;init1();for(int i=1;i<=n;i++){scanf("%d %d",&point[i][0],&point[i][1]);sum+=point[i][0];}for(int i=1;i<=m;i++){int st,en,val;scanf("%d %d %d",&st,&en,&val);add1(st,en,val);add1(en,st,val);times+=val;}for(int i=1;i<=n;i++)spfa(i);ll st=0,en=times+1;while(st<en){ll mid=(st+en)>>1;build(mid);int tmp=isap(0,2*n+1);if(tmp==sum)en=mid;elsest=mid+1;}if(en==times+1)printf("-1\n");elseprintf("%I64d\n",(st+en)/2);}return 0;
}



这篇关于poj 2391 Ombrophobic Bovines (网络流)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089456

相关文章

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D