Linux操作系统段式存储管理、 段页式存储管理

2024-06-24 06:04

本文主要是介绍Linux操作系统段式存储管理、 段页式存储管理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、段式存储管理

1.1分段

  • 进程的地址空间:按照程序自身的逻辑关系划分为若干个段,每个段都有一个段名(在低级语言中,程序员使用段名来编程),每段从0开始编址。
  • 内存分配规则:以段为单位进行分配,每个段在内存中占连续空间,但各段之间可以不相邻。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 分段系统的逻辑地址结构由段号(段名)和段内地址(段内偏移量)所组成。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

1.2段表

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 每一个程序设置一个段表,放在内存,属于进程的现场信息

1.3地址变换

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

1.4段的保护

  • 越界中断处理

1.进程在执行过程中,有时需要扩大分段,如数据段。由于要访问的地址超出原有的段长,所以发越界中断。操作系统处理中断时 ,首先判断该段的“扩充位”,如可扩充,则增加段的长度;否则按出错处理

  • 缺段中断处理
  1. 检查内存中是否有足够的空闲空间
    ①若有,则装入该段,修改有关数据结构,中断返回
    ②若没有,检查内存中空闲区的总和是否满足要求,是则应采用紧缩技术,转 ① ;否则,淘汰一(些)段,转①

1.5段的动态连接

  1. 为何要进行段的动态链接?
  2. 大型程序由若干程序段,若干数据段组成
  3. 进程的某些程序段在进程运行期间可能根本不用
  4. 互斥执行的程序段没有必要同时驻留内存
  5. 有些程序段执行一次后不再用到
  6. 静态链接花费时间,浪费空间
  • 在一个程序运行开始时,只将主程序段装配好并调入主存。其它各段的装配是在主程序段运行过程中逐步进行的。每当需要调用一个新段时,再将这个新段装配好,并与主程序段连接。
    页式存储管理:难以完成动态链接,其逻辑地址是一维的

1.6信息的保护与共享

  • 这里主要与页式存储管理进行一下对比。
  • 分段比分页更容易实现信息的共享和保护。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 纯代码举例:比如,有一个代码段只是简单的输出“Hello World!”。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

1.7页式系统与段式系统的对比

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 补充:
  • 段长是可变的,页的大小是固定的。
  1. 分段存储:段内地址W字段溢出将产生越界中断。
  2. 分页存储:段内地址W字段溢出会自动加入到页号中。

1.8总结

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2、段页式存储管理

2.1分页、分段的有缺点分析

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.2基本思想

  • 用户程序划分:按段式划分(对用户来讲,按段的逻辑关系进行划分;对系统讲,按页划分每一段)
  • 逻辑地址:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 内存划分:按页式存储管理方案
  • 内存分配:以页为单位进行分配

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.3逻辑地址结构

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.4段表页表

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.5地址转换

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.6评价

  • 优点:
  1. 保留了分段和请求分页存储管理的全部优点
  2. 提供了虚存空间,能更有效利用主存
  • 缺点:
  1. 增加了硬件成本

  2. 系统复杂度较大

2.7总结

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
全部优点
2. 提供了虚存空间,能更有效利用主存

  • 缺点:
  1. 增加了硬件成本

  2. 系统复杂度较大

2.7总结

[外链图片转存中…(img-jMCdSzgh-1719021894217)]

这篇关于Linux操作系统段式存储管理、 段页式存储管理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089363

相关文章

linux生产者,消费者问题

pthread_cond_wait() :用于阻塞当前线程,等待别的线程使用pthread_cond_signal()或pthread_cond_broadcast来唤醒它。 pthread_cond_wait() 必须与pthread_mutex 配套使用。pthread_cond_wait()函数一进入wait状态就会自动release mutex。当其他线程通过pthread

Linux 安装、配置Tomcat 的HTTPS

Linux 安装 、配置Tomcat的HTTPS 安装Tomcat 这里选择的是 tomcat 10.X ,需要Java 11及更高版本 Binary Distributions ->Core->选择 tar.gz包 下载、上传到内网服务器 /opt 目录tar -xzf 解压将解压的根目录改名为 tomat-10 并移动到 /opt 下, 形成个人习惯的路径 /opt/tomcat-10

RedHat运维-Linux文本操作基础-AWK进阶

你不用整理,跟着敲一遍,有个印象,然后把它保存到本地,以后要用再去看,如果有了新东西,你自个再添加。这是我参考牛客上的shell编程专项题,只不过换成了问答的方式而已。不用背,就算是我自己亲自敲,我现在好多也记不住。 1. 输出nowcoder.txt文件第5行的内容 2. 输出nowcoder.txt文件第6行的内容 3. 输出nowcoder.txt文件第7行的内容 4. 输出nowcode

【Linux进阶】UNIX体系结构分解——操作系统,内核,shell

1.什么是操作系统? 从严格意义上说,可将操作系统定义为一种软件,它控制计算机硬件资源,提供程序运行环境。我们通常将这种软件称为内核(kerel),因为它相对较小,而且位于环境的核心。  从广义上说,操作系统包括了内核和一些其他软件,这些软件使得计算机能够发挥作用,并使计算机具有自己的特生。这里所说的其他软件包括系统实用程序(system utility)、应用程序、shell以及公用函数库等

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

Windows/macOS/Linux 安装 Redis 和 Redis Desktop Manager 可视化工具

本文所有安装都在macOS High Sierra 10.13.4进行,Windows安装相对容易些,Linux安装与macOS类似,文中会做区分讲解 1. Redis安装 1.下载Redis https://redis.io/download 把下载的源码更名为redis-4.0.9-source,我喜欢跟maven、Tomcat放在一起,就放到/Users/zhan/Documents

操作系统实训复习笔记(1)

目录 Linux vi/vim编辑器(简单) (1)vi/vim基本用法。 (2)vi/vim基础操作。 进程基础操作(简单) (1)fork()函数。 写文件系统函数(中等) ​编辑 (1)C语言读取文件。 (2)C语言写入文件。 1、write()函数。  读文件系统函数(简单) (1)read()函数。 作者本人的操作系统实训复习笔记 Linux

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

Linux 下的Vim命令宝贝

vim 命令详解(转自:https://www.cnblogs.com/usergaojie/p/4583796.html) vi: Visual Interface 可视化接口 vim: VI iMproved VI增强版 全屏编辑器,模式化编辑器 vim模式: 编辑模式(命令模式)输入模式末行模式 模式转换: 编辑-->输入: i: 在当前光标所在字符的前面,转为输入模式

Linux和Mac分卷压缩

使用 zip 命令压缩文件 使用 zip 命令压缩文件,并结合 split 命令来分卷: zip - largefile | split -b 500k 举例: zip - ./tomcat.dmg |split -b 500k 上述命令将文件 largefile 压缩成 zip 包并分卷成不超过 500k 的文件,分解后文件名默认是 x* ,后缀为 2 位a-z 字母,如 aa、ab。