LeetCode.25K个一组翻转链表详解

2024-06-24 05:36

本文主要是介绍LeetCode.25K个一组翻转链表详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述

给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。

k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。

你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。

问题理解

给定一个链表和一个数字 k,任务是将链表中的每 k 个节点做一次翻转,如果链表的长度不是 k 的整数倍,则剩余的节点保持原有顺序。这是一个典型的链表操作问题,涉及到链表的遍历、节点的重新链接等操作。

解题思路1

1. 确定操作单位

在理解了问题之后,首先明确操作的基本单位是“节点组”,每组包含 k 个节点。操作的核心是对这些节点组进行翻转。如果当前组节点不足 k 个,直接跳过该组,保持原样。

2. 理解翻转操作

链表的翻转是基础操作,但在此问题中,我们不是翻转整个链表,而是翻转部分连续的节点。这要求我们能够准确识别每个待翻转的节点组的起始点和终点。

3. 操作过程的细化

为了实现这一操作,我们需要细化操作过程:

  • 定位节点组:从链表头部开始,向后数 k 个节点,标记为一个待翻转的节点组。
  • 执行翻转:对每个节点组执行翻转操作。翻转涉及断开节点的原有连接,然后按逆序重新连接。
  • 处理边界:每次翻转完成后,需要正确处理该节点组与前后节点的连接关系,确保链表的完整性。
4. 算法的选择

为了方便处理链表的头部可能变化的情况,采用了一个虚拟头节点(dummy node)。这个节点在实际链表的头部之前,使得链表头部的处理逻辑与其他部分一致。

5. 连接与继续

完成一个节点组的翻转后,需要将翻转后的尾部(翻转前的头部)连接到下一个节点组的头部。同时,更新操作指针,继续识别和处理下一个节点组。

代码实现

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* reverseKGroup(ListNode* head, int k) {if (head == nullptr || head->next == nullptr || k == 1) {return head;}ListNode dummy(0);dummy.next = head;ListNode* prevGroupEnd = &dummy;while (true) {// 检查是否有足够的节点来进行翻转ListNode* current = prevGroupEnd;for (int i = 0; i < k && current != nullptr; i++) {current = current->next;}if (current == nullptr)break; // 如果不够 k 个,就不进行翻转ListNode* groupStart = prevGroupEnd->next;ListNode* nextGroupStart = current->next;// 翻转当前的 k 个节点ListNode* prev = nextGroupStart;ListNode* curr = groupStart;while (curr != nextGroupStart) {ListNode* temp = curr->next;curr->next = prev;prev = curr;curr = temp;}// 将翻转后的子链表接回主链表prevGroupEnd->next = prev;prevGroupEnd = groupStart;}return dummy.next;}
};

进阶

你可以设计一个只用 O(1) 额外内存空间的算法解决此问题吗?

解题思路

1. 链表遍历和长度计算

首先,我们需要遍历整个链表来确定其长度,这样可以判断出能够完整进行多少次k节点的翻转。这一步是必要的,因为如果链表长度未达到k,则不应进行翻转。

2. 翻转链表的k个节点

对于链表翻转操作,我们通常会使用三个指针:prevcurr(当前节点)、nex(当前节点的下一个节点)。通过这三个指针可以实现链表的局部翻转:

  • prev 指针始终指向当前k个节点组的前一个节点,以便在翻转后将翻转的部分重新连接到主链表上。
  • curr 是当前正在处理的节点,也是每次k组翻转的第一个节点。
  • nex 用于存储curr的下一个节点,确保在翻转过程中不会丢失链表的其余部分。

具体翻转步骤是:对于每个k节点组,我们将curr的下一个节点移到prev之后,这样原来的第二个节点就成了新的第一个节点,重复这个操作k-1次,便完成了一组的翻转。

3. 连接翻转后的部分

每次翻转完成后,需要更新prev指针到当前k组的末尾,这样在下一次循环时,它可以正确地指向下一组待翻转节点组的前一个节点。同时,更新剩余节点计数,减去已翻转的k个节点。

4. 处理不足k个的节点

在遍历链表时,如果发现剩余节点数小于k,则不进行翻转,直接将这些节点连接到已翻转部分的末尾。

5. 虚拟头节点的使用

在处理链表问题时,使用虚拟头节点可以大大简化边界条件的处理,例如当链表头部节点需要被移动或删除时。在这个问题中,虚拟头节点帮助我们更方便地处理头k个节点的翻转,以及最终返回新的头节点。

通过这样的步骤,我们可以实现题目要求的每k个节点一组的翻转,而不足k个的部分保持不变。这种方法的时间复杂度为O(n),空间复杂度为O(1),因为我们没有使用额外的数据结构,仅通过修改节点间的链接来达到翻转的目的。

代码实现

/*** Definition for singly-linked list.* struct ListNode {*     int val;*     ListNode *next;*     ListNode() : val(0), next(nullptr) {}*     ListNode(int x) : val(x), next(nullptr) {}*     ListNode(int x, ListNode *next) : val(x), next(next) {}* };*/
class Solution {
public:ListNode* reverseKGroup(ListNode* head, int k) {ListNode* dummy = new ListNode(0);dummy->next = head;ListNode *prev = dummy, *curr = head, *nex = nullptr;// 首先计算链表长度int count = 0;while (curr) {curr = curr->next;count++;}// 当链表中至少有k个节点时进行翻转while (count >= k) {curr = prev->next;nex = curr->next;for (int i = 1; i < k; i++) {curr->next = nex->next;nex->next = prev->next;prev->next = nex;nex = curr->next;}prev = curr;count -= k;}ListNode* ret = dummy->next;delete dummy; // 释放虚拟头节点return ret;}
};

这篇关于LeetCode.25K个一组翻转链表详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089302

相关文章

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很