代码随想录-Day37

2024-06-24 04:20
文章标签 随想录 代码 day37

本文主要是介绍代码随想录-Day37,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

56. 合并区间

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1:

输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:

输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
在这里插入图片描述

方法一:

/**
时间复杂度 : O(NlogN) 排序需要O(NlogN)
空间复杂度 : O(logN)  java 的内置排序是快速排序 需要 O(logN)空间*/
class Solution {public int[][] merge(int[][] intervals) {List<int[]> res = new LinkedList<>();//按照左边界排序Arrays.sort(intervals, (x, y) -> Integer.compare(x[0], y[0]));//initial start 是最小左边界int start = intervals[0][0];int rightmostRightBound = intervals[0][1];for (int i = 1; i < intervals.length; i++) {//如果左边界大于最大右边界if (intervals[i][0] > rightmostRightBound) {//加入区间 并且更新startres.add(new int[]{start, rightmostRightBound});start = intervals[i][0];rightmostRightBound = intervals[i][1];} else {//更新最大右边界rightmostRightBound = Math.max(rightmostRightBound, intervals[i][1]);}}res.add(new int[]{start, rightmostRightBound});return res.toArray(new int[res.size()][]);}
}

这段Java代码实现了一个函数 merge,用于合并一系列有重叠的区间。给定一个二维数组 intervals,其中每个 intervals[i] 是一个长度为2的数组,表示一个区间 [start, end],该函数的目标是将这些区间合并成一个新的区间数组,使得在新数组中任意两个区间没有交集,并且覆盖所有原始区间。以下是代码的详细解析:

时间复杂度和空间复杂度说明

  • 时间复杂度:O(NlogN),主要来自对区间按左边界排序的操作,其中N是区间数量。
  • 空间复杂度:O(logN),这是由于Java内置排序方法(快速排序)的递归调用栈空间。

代码解析

  1. 初始化:创建一个名为 resLinkedList 用于存储不重叠的合并后的区间。同时,初始化 start 为数组中第一个区间的起始位置,rightmostRightBound 为当前已知的最远的右边界。

  2. 排序:使用 Arrays.sort() 方法按区间的左边界升序排序整个 intervals 数组。排序是本算法的关键步骤,它确保了后续遍历过程中的合并逻辑简单且有效。

  3. 遍历并合并

    • 遍历排序后的区间数组。对于每个区间,如果当前区间的起始位置大于已知的最远右边界,说明当前区间与之前处理过的所有区间都不重叠,可以将前一个区间的结束位置与 start 组成的区间加入结果列表 res,并更新 start 为当前区间的起始位置,同时更新 rightmostRightBound 为当前区间的结束位置。
    • 如果当前区间起始位置不大于最远右边界,说明当前区间与前一个区间有重叠,此时只需要更新 rightmostRightBound 为当前区间和已知最远右边界中的较大值,以覆盖更大的范围。
  4. 添加最后一个区间:遍历结束后,别忘了将最后一个有效区间 [start, rightmostRightBound] 添加到结果列表 res 中。

  5. 转换并返回结果:最后,将 res 中的数据转换成数组类型并返回。

示例说明

假设输入区间为 [[1,3],[2,6],[8,10],[15,18]],经过排序、遍历合并后,最终的不重叠区间数组将是 [[1,6],[8,10],[15,18]],这正是函数预期输出的结果。

// 版本2
class Solution {public int[][] merge(int[][] intervals) {LinkedList<int[]> res = new LinkedList<>();Arrays.sort(intervals, (o1, o2) -> Integer.compare(o1[0], o2[0]));res.add(intervals[0]);for (int i = 1; i < intervals.length; i++) {if (intervals[i][0] <= res.getLast()[1]) {int start = res.getLast()[0];int end = Math.max(intervals[i][1], res.getLast()[1]);res.removeLast();res.add(new int[]{start, end});}else {res.add(intervals[i]);}         }return res.toArray(new int[res.size()][]);}
}

这个Java代码是用于解决“合并区间”问题的另一个版本实现。给定一个二维数组 intervals,其中每个 intervals[i] 为一个长度为2的数组,表示一个区间 [start, end],该函数的目标是将所有重叠的区间合并成一个新的区间数组,并且在新数组中任意两个区间不会有重叠部分。下面是该代码的详细解析:

代码解析

  1. 初始化:定义一个 LinkedList<int[]> res 作为结果容器来存储合并后的区间。使用 Arrays.sort() 方法对输入区间按起始位置升序排序,便于后续处理。

  2. 添加首个区间:将排序后的首个区间直接加入结果列表 res

  3. 遍历合并:从第二个区间开始遍历整个 intervals 数组。对于每个区间,执行以下操作:

    • 判断重叠:如果当前区间的起始位置 intervals[i][0] 小于等于结果列表中最后一个区间的结束位置 res.getLast()[1],说明这两个区间有重叠。
    • 合并区间:当发现重叠时,合并这两个区间。新的起始位置取两者中较小的(在这里直接取了 res.getLast()[0],因为当前区间起始位置肯定不会小于已加入的区间的起始位置),新的结束位置取两者结束位置的较大值。然后从 res 中移除旧的最后一个区间,添加合并后的新区间。
    • 无重叠则直接添加:如果当前区间与结果列表最后一个区间无重叠,则直接将当前区间加入到结果列表 res 中。
  4. 转换并返回结果:遍历结束后,将 LinkedList 类型的结果列表转换为数组类型并返回。

时间复杂度和空间复杂度

  • 时间复杂度:O(NlogN),其中N为区间数量。排序操作占主导地位。
  • 空间复杂度:O(N),res 用于存储不重叠的合并区间,最坏情况下需要与输入区间相同的空间。

示例说明

例如,给定输入区间 [[1,3],[2,6],[8,10],[15,18]],经过处理后,合并后的区间应为 [[1,6],[8,10],[15,18]],这正是该函数预期返回的结果。

738. 单调递增的数字

当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。

给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。

示例 1:

输入: n = 10
输出: 9
示例 2:

输入: n = 1234
输出: 1234
示例 3:

输入: n = 332
输出: 299

方法一:

版本1
class Solution {public int monotoneIncreasingDigits(int N) {String[] strings = (N + "").split("");int start = strings.length;for (int i = strings.length - 1; i > 0; i--) {if (Integer.parseInt(strings[i]) < Integer.parseInt(strings[i - 1])) {strings[i - 1] = (Integer.parseInt(strings[i - 1]) - 1) + "";start = i;}}for (int i = start; i < strings.length; i++) {strings[i] = "9";}return Integer.parseInt(String.join("",strings));}
}

这段Java代码是为了解决一个问题:给定一个非负整数N,找到具有单调递增数字的最大的数,其数字重新排列后小于或等于N。单调递增数字是指每个位置上的数字都不小于其左侧的数字(从左到右)。

代码解析

  1. 字符串转换:首先,将整数N转换成字符串数组strings,方便单独处理每一位数字。

  2. 从右向左扫描:使用一个外层循环从字符串的末尾开始向前遍历(索引istrings.length - 10),目的是检测数字是否递减。如果当前位的数字小于前一位的数字(strings[i] < strings[i - 1]),则:

    • 将前一位的数字减一((Integer.parseInt(strings[i - 1]) - 1)),并将其转换回字符串形式。
    • 记录这个位置start = i,作为后续处理的起点,因为start右侧的所有数字都需要变成9以确保结果是最大的单调递增数字。
  3. 填充9:使用一个内层循环,从位置start到字符串的末尾,将所有这些位置的数字替换为"9",以确保生成的数字尽可能大。

  4. 转换回整数并返回:最后,使用String.join("", strings)将修改后的字符串数组连接成一个字符串,再通过Integer.parseInt(...)将其转换回整数并返回。

示例

例如,如果N = 332,经过处理后的字符串数组变为["3", "2", "9"],重新组合并转换回整数得到329,这是小于等于332的最大单调递增数字。

注意:这个解法在处理边界情况(如当N本身就是单调递增或需要大幅度减少首位数字时)表现良好,但在某些情况下可能不是最高效的算法,特别是在N非常大,且大部分数字都需要减少时。

方法二:

版本2
class Solution {public int monotoneIncreasingDigits(int n) {String s = String.valueOf(n);char[] chars = s.toCharArray();int start = s.length();for (int i = s.length() - 2; i >= 0; i--) {if (chars[i] > chars[i + 1]) {chars[i]--;start = i+1;}}for (int i = start; i < s.length(); i++) {chars[i] = '9';}return Integer.parseInt(String.valueOf(chars));}
}

这个版本的代码实现与第一个版本非常相似,主要的不同在于细节处理和变量命名上,逻辑本质上是一致的。下面是这个版本的解析:

代码解析

  1. 转换为字符数组:首先,将整数n转换为字符串s,然后进一步转换成字符数组chars。这样可以直接操作每一位数字,无需频繁地在数字和字符串之间转换。

  2. 从右向左扫描:外层循环的起始点调整为i = s.length() - 2,这是因为现在是从倒数第二位开始比较(避免数组越界,同时正确定位需要检查的相邻数字对)。如果发现chars[i]大于chars[i + 1],说明违反了递增顺序:

    • chars[i]减一,表示这一位不能保持原值,需要生成更小的递增序列。
    • 更新start = i + 1,记录接下来应该全部填充为9的起始位置。
  3. 填充9:与之前版本相同,从位置start到字符串的末尾,所有这些位置的字符都被替换为字符’9’。

  4. 转换回整数并返回:最后,使用String.valueOf(chars)将字符数组转换回字符串,然后通过Integer.parseInt(...)转换为整数并返回结果。

优化点

  • 直接在字符数组上操作减少了字符串到数字、数字到字符串的转换次数,这可能在处理大数值时略微提高效率。
  • 循环起始点的调整去掉了对数组长度的减一操作,使得逻辑更直观。

示例

假设n = 332,处理过程与第一个版本相同,最终得到的字符数组表示的数字为329,转换为整数后返回。

此算法同样适用于寻找给定整数N下,最大的单调不减(即递增)整数。

这篇关于代码随想录-Day37的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1089157

相关文章

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计