判断CPU的大小端

2024-06-23 09:38
文章标签 cpu 判断 大小

本文主要是介绍判断CPU的大小端,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文出处:http://blog.sina.com.cn/s/blog_54f82cc201012c1k.html

下面的两个程序均可判断CPU的大小端问题

int i=1;  
    char *p=(char *)&i;  
    if(*p==1)    
           printf("
Little_endian");   //Little_endian
    else
           printf("
Big_endian");   //Big_endian

          大小端存储问题,如果小端方式中(i占四个字节的长度)则i所分配的内存最小地址那个字节中就存着1,其他字节是0.大端的话则1在i的最高地址字节处存放,char是一个字节,所以强制将char型量p指向i则p指向的一定是i的最低地址,那么就可以判断p中的值是不是1来确定是不是小端。

 

请写一个C函数,若处理器是Big_endian的,则返回0;若是Little_endian的,则返回1
解答:
int checkCPU( )
{
    {
           union w
           {  
                  int a;
                  char b;
           } c;
           c.a = 1;
           return(c.b ==1);
    }
}
剖析:
嵌入式系统开发者应该对Little-endian和Big-endian模式非常了解。采用Little-endian模式的CPU对操作数 的存放方式是从低字节到高字节,而Big-endian模式对操作数的存放方式是从高字节到低字节。例如,16bit宽的数0x1234在Little- endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:
内存地址 0x4000 0x4001
存放内容 0x34 0x12
而在Big-endian模式CPU内存中的存放方式则为:
内存地址 0x4000 0x4001
存放内容 0x12 0x34
32bit宽的数0x12345678Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:
内存地址 0x4000 0x4001 0x4002 0x4003
存放内容 0x78 0x56 0x34 0x12
而在Big-endian模式CPU内存中的存放方式则为:
内存地址 0x4000 0x4001 0x4002 0x4003
存放内容 0x12 0x34 0x56 0x78
联合体union的存放顺序是所有成员都从低地址开始存放,面试者的解答利用该特性,轻松地获得了CPU对内存采用Little-endian还是Big-endian模式读写。如果谁能当场给出这个解答,那简直就是一个天才的程序员。
补充:
所谓的大端模式,是指数据的低位(就是权值较小的后面那几位)保存在内存的高地址中,而数据的高位,保存在内存的低地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;
   所谓的小端模式,是指数据的低位保存在内存的低地址中,而数 据的高位保存在内存的高地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低,和我们的逻辑方法一致。
   为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于 8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小 端存储模式。例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于 大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。我们常用的X86结构是小端模 式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
   下面这段代码可以用来测试一下你的编译器是大端模式还是小端模式:
short int x;
char x0,x1;
x=0x1122;
x0=((char*)&x)[0]; //低地址单元
x1=((char*)&x)[1]; //高地址单元
若x0=0x11,则是大端; 若x0=0x22,则是小端......
上面的程序还可以看出,数据寻址时,用的是低位字节的地址。

补充三个方法

方法1:

高字节存储在高地址是小端,高字节存储在低地址是大端。

int main()

{

    int a = 1;//内存表示为0x00000001.

   if(((char*)&a[3] == 1)

        printf("big");

    else

        printf("small");

}

 

方法二:

联合体union的存放顺序是所有成员都从低地址开始存放

int main()

{

    union _test

    {

       int a;

       short b;

    }test;

    test.a = 0x12345678;

    if(test.b == 0x1234)

      printf("big");

    if(test.b == 0x5678)

       printf("small");

}


方法三

typedef unsigned char BYTE;
int main(int argc, char* argv[])
{
unsigned int num,*p;
#
num 0;
*(BYTE *)p 0xff;
if(num == 0xff)
{
printf("The endian of cpu is little\n");
}
else //num == 0xff000000
{
printf("The endian of cpu is big\n");
}
return 0;
}

这篇关于判断CPU的大小端的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1086792

相关文章

Java面试八股之怎么通过Java程序判断JVM是32位还是64位

怎么通过Java程序判断JVM是32位还是64位 可以通过Java程序内部检查系统属性来判断当前运行的JVM是32位还是64位。以下是一个简单的方法: public class JvmBitCheck {public static void main(String[] args) {String arch = System.getProperty("os.arch");String dataM

java中查看函数运行时间和cpu运行时间

android开发调查性能问题中有一个现象,函数的运行时间远低于cpu执行时间,因为函数运行期间线程可能包含等待操作。native层可以查看实际的cpu执行时间和函数执行时间。在java中如何实现? 借助AI得到了答案 import java.lang.management.ManagementFactory;import java.lang.management.Threa

【Python如何输入升高和体重判断你是偏胖还是偏瘦】

1、求体质指数得Python代码如下: # BMI(Body Mass Index)指数:简称体质指数,# 是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准。# 常用指标:BMI<18.5 偏瘦 18.5<=MBI<=24 正常 MBI>24 偏胖# 计算公式:BMI=体重kg/身高的平方ma = eval(input("请输入你的体重(kg):")) # 输入体重b = e

算法11—判断一个树是不是二叉查询树

问题: 给定一个二叉树,判断它是否是二叉查询树。 思路: 要判断是否是二叉查询树,标准就是看每一个节点是否满足:1、左节点及以下节点的值比它小;2、右节点及以下节点的值比它大。当然,前提是子节点都存在的情况。所以,我们需要从根节点不断向下递归,只要所有节点都满足,那么就是BST,否则,就不是。 代码: [java]  view plain copy pri

算法7— 判断一个单链表是否有环,如果有,找出环的起始位置

第一种方法是从单链表head开始,每遍历一个,就把那个node放在hashset里,走到下一个的时候,把该node放在hashset里查找,如果有相同的,就表示有环,如果走到单链表最后一个node,在hashset里都没有重复的node,就表示没有环。 这种方法需要O(n)的空间和时间。 第二种方法是设置两个指针指向单链表的head, 然后开始遍历,第一个指针走一步,第二个指针走两步,如果没

算法6— 判断两个链表是否相交

问题: 给出两个单向链表的头指针,比如h1、h2,判断链表是否相交,如果不相交返回NULL;如果相交,返回指向第一个相交节点的指针。时间复杂度控制在O(n)。 分析: 如果两单向链表相交的话,一定是Y型相交,不可能出现X型,弄清楚这点后接下来的工作就是: (1)先找到h1,h2的最后一个节点L1和L2,同时记录节点数量a,b;(这里假设 a > b) (2)判断最后一个节点是否相同

关于CPU的一点知识

首先说一下,CPU是干啥的: CPU所负责的就是解释和运行最终转换成机器语言的程序内容 我们需要知道的CPU结构:重点需要关注寄存器 运算器 简单说就是负责运算从内存读取到寄存器中的数据,可以看作一个数据加工厂,就是对寄存器中的数据做运算,这些运算包含基本的算术和逻辑运算。 算术逻辑单元(ALU) 这个是运算器中重要的一个组成,主要负责的就是对数据的处理,从而实现对数据的算术和

C#界面动态布局 界面控件随着界面大小尺寸变化而变化

要想写一个漂亮的界面,光靠利用Anchor和Dock属性是远远不够的,我们需要用到相对布局,就是不管窗口大小怎么变化,控件相对父控件的相对位置保持不变。可惜c#里没有提供按照百分比布局。所以只能自己再resize()事件里调整控件位置。 首先在窗体的构造函数里保存父窗体的长宽,以及每个控件的X,Y坐标的相对位置:  int count = this.Controls.Count * 2 + 2;

C++系统相关操作4 - 获取CPU(指令集)架构类型

1. 关键词2. sysutil.h3. sysutil.cpp4. 测试代码5. 运行结果6. 源码地址 1. 关键词 关键词: C++ 系统调用 CPU架构 指令集 跨平台 实现原理: Unix-like 系统: 可以通过 uname -m 命令获取 CPU 架构类型。Windows 系统: 可以通过环境变量 PROCESSOR_ARCHITECTURE 获取 CPU 架构类型。

嘉楠勘智CanMV-K230的大小核如何操作

摘要:嘉楠勘智CanMV-K230的帮助文档、例子模型说明中,一直在提“大核,小核”,还提到将文件复制到小核并解压,然后在大核中操作,本文介绍一下这两个“核”如何操作。 所需的硬件:CanMV-K230-V1.1,type-c数据线2根,带有hdmi接口的显示屏,hdmi数据线. 软件:win10,putty 操作步骤(小端) 第一步:将type-c数据线将CanMV-K230