http发展史(http0.9、http1.0、http1.1、http/2、http/3)详解

2024-06-22 09:28

本文主要是介绍http发展史(http0.9、http1.0、http1.1、http/2、http/3)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • HTTP/0.9
  • HTTP/1.0
  • HTTP/1.1
  • @队头阻塞(Head-of-Line Blocking)
        • 1. TCP 层的队头阻塞
        • 2. HTTP/1.1 的队头阻塞
  • HTTP/2
  • HTTP/3

在这里插入图片描述


HTTP/0.9

发布时间:1991年

特点

  • 只支持 GET 方法
  • 没有 HTTP 头部
  • 响应中只有 HTML 内容,没有任何元数据。

缺点

  • 功能极其有限,只能传输纯文本内容。
  • 没有状态码和头部信息,无法提供有关请求或响应的额外信息。

HTTP/1.0

发布时间:1996年

改进点

  • 引入更多的请求方法,如 POST 和 HEAD。
  • 支持 HTTP 头部,允许传输元数据。
  • 引入状态码,用于指示请求的结果。
  • 支持内容类型,允许传输非 HTML 内容。

缺点

  • 每个请求/响应对话都需要新建一个 TCP 连接,导致高延迟和低效率(http协议的瞬时性,如图
  • 没有缓存控制,导致频繁的重复请求
    http协议的瞬时性

HTTP/1.1

发布时间:1997年

改进点

  • 引入持久连接(Persistent Connections),允许在一个 TCP 连接上传输多个请求/响应,减少连接开销。但必须等待上次一次请求结束,才能开启下一次请求

  • 注:由于一个TCP连接同一时间只能做一次http请求,为了提高效率,主流浏览器往往同时并发6个TCP连接tcp connection,6个管道,这也是一种解决瞬时协议的办法,这是浏览器的机制,不是http自身机制 此外多个并发的TCP connection也非常消耗服务器资源

  • 支持分块传输编码(Chunked Transfer Encoding),允许服务器逐块发送响应数据。

  • 引入管道化(Pipelining),允许在发送第一个请求的响应之前发送后续请求

    • 注:虽然对于该方案,虽然http1.1支持,服务器支持,但是主流浏览器并不支持,chrome官方解释:https://www.chromium.org/developers/design-documents/network-stack/http-pipelining/ HTTP2 提供了新的编码方案,解决了这个问题

  • 增加了更多的缓存控制头部,如 Cache-Control,优化缓存机制。

  • 支持内容协商,允许服务器根据客户端的能力和偏好提供不同版本的资源

缺点

  • 仍然存在队头阻塞(Head-of-line Blocking)问题
  • 每个资源仍需单独的请求,导致大量小文件请求时效率低下

@队头阻塞(Head-of-Line Blocking)

  • 队头阻塞(Head-of-Line Blocking, HOL 阻塞)是指在一个数据包队列中,当前端的数据包被阻塞时,后续的数据包也无法被处理的现象。这种现象会导致延迟增加、带宽利用率降低和整体网络性能下降。HOL 阻塞可以发生在多种网络协议和传输层次上
1. TCP 层的队头阻塞
  • 在 TCP 连接中,数据包按顺序传输和接收。TCP 使用序列号来确保数据包按正确的顺序到达。如果某个数据包在传输中丢失,接收方必须等待重新传输该数据包后才能继续处理后续的数据包。这种等待会导致队头阻塞。

  • 示例:假设有一个包含数据包1、2、3的TCP连接。如果数据包2在传输过程中丢失,接收方必须等待重新传输数据包2,然后才能处理数据包3,即使数据包3已经到达。这会导致数据包3的处理被阻塞,直到数据包2被成功接收。

2. HTTP/1.1 的队头阻塞
  • 在 HTTP/1.1 中,引入了持久连接和管道化(Pipelining),允许在一个连接中发送多个请求。然而,由于串行处理方式,如果一个请求处理变慢或被阻塞,后续所有的请求都会受到影响。这也是对头阻塞的一种表现。

  • 示例:一个浏览器发送了多个HTTP请求(A、B、C)给服务器。如果请求A处理得很慢或被阻塞,浏览器必须等待请求A完成后才能处理请求B和请求C,尽管请求B和C可以并行处理。这会导致对头阻塞。

HTTP/2

发布时间:2015年

改进点

  • 二进制分帧层 (Binary framing layer)
  • 单一连接上的多路复用(Multiplexing over Single Connection)
  • 压缩(头部数据)Header Compress(HPACK)
  • 服务器推送(Server Push)
  • 默认安全(必须TLS加密)(Secure by default (must use TLS encryption))
  • TLS期间的协议协商(ALPN)(Protocol Negotiation during TLS (ALPN))

二进制分帧层和多路复用请看文章:http://t.csdnimg.cn/7hrH2
头部压缩请看文章:http://t.csdnimg.cn/rXuDw
应用层安全协商请看文章:http://t.csdnimg.cn/a3P6i

Multiplexing:多路复用

  • 一个TCP流里面有多个流多个帧,通过ID在组装。在HTTP/2中,通过二进制分帧层,HTTP消息被分解成独立的帧,这些帧可以交错发送并在接收端重新组装,从而实现了请求和响应的多路复用。这意味着在一个TCP连接上可以同时处理多个请求和响应,大大提高了并发性和效率。

服务推送案列

  1. 假设有一个网页index.html,它依赖两个资源:style.css和script.js。在传统的HTTP/1.1中,浏览器需要先请求index.html,然后解析HTML文件,发现需要加载style.css和script.js,再分别发送请求获取这两个资源。
    2.而在HTTP/2中,当服务器接收到浏览器对index.html的请求后 (服务器已经知道了Client需要访问index.html,所以肯定index.html上的资源一起展示),它可以主动将style.css和script.js与index.html一起推送给浏览器。这样,当浏览器解析HTML文件时,它发现需要的资源已经预先加载完成,可以立即渲染页面并执行JavaScript代码,从而提高了网页的加载速度和用户体验。
  • 需要注意的是,服务器推送并不是无条件地推送所有资源,而是根据一定的策略和算法来确定哪些资源应该被推送。这些策略和算法可以基于服务器的缓存情况、用户的历史访问记录、资源的优先级等因素来制定。同时,服务器推送也需要与浏览器的缓存策略相配合,以避免推送已经缓存过的资源造成浪费。

HTTP/2 的 ALPN(应用层协议协商)

  • 建立 TLS 连接的过程中协商使用的应用层协议,如 HTTP/1.1 或 HTTP/2。ALPN 通过在 TLS 握手过程中嵌入协议协商信息,使得客户端和服务器可以快速确定使用哪种协议进行通信,而无需额外的往返通信。

解决的问题

  • 通过二进制分帧多路复用提高了传输效率,解决了HTTP1.1的队头阻塞(http层的)问题
  • 通过头部压缩服务器推送减少了延迟和带宽消耗

缺点

  • TCP 层仍会发生队头阻塞
    在这里插入图片描述

  • 服务推送机制存在安全问题

HTTP/3

发布时间:2019年

改进点

  • 基于 QUIC 协议而非 TCP,使用 UDP 进行传输,解决 TCP 的队头阻塞问题。
  • 内置加密TLS1.3,简化了 HTTPS 的实现。
  • 改进连接建立速度,减少延迟。
  • 保留了 HTTP/2 的多路复用、头部压缩和服务器推送等特性。

解决的问题

  • 通过使用 QUIC 协议彻底解决了 TCP 层的队头阻塞问题。
  • 改善了连接建立速度,特别是在移动网络和高延迟环境下。

关于HTTP3及QUIC码字更新中,24小时内会发布…

这篇关于http发展史(http0.9、http1.0、http1.1、http/2、http/3)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083898

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

BUUCTF靶场[web][极客大挑战 2019]Http、[HCTF 2018]admin

目录   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 [web][HCTF 2018]admin 考点:弱密码字典爆破 四种方法:   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 访问环境 老规矩,我们先查看源代码

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

【Linux】应用层http协议

一、HTTP协议 1.1 简要介绍一下HTTP        我们在网络的应用层中可以自己定义协议,但是,已经有大佬定义了一些现成的,非常好用的应用层协议,供我们直接使用,HTTP(超文本传输协议)就是其中之一。        在互联网世界中,HTTP(超文本传输协议)是一个至关重要的协议,他定义了客户端(如浏览器)与服务器之间如何进行通信,以交换或者传输超文本(比如HTML文档)。

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor

LabVIEW FIFO详解

在LabVIEW的FPGA开发中,FIFO(先入先出队列)是常用的数据传输机制。通过配置FIFO的属性,工程师可以在FPGA和主机之间,或不同FPGA VIs之间进行高效的数据传输。根据具体需求,FIFO有多种类型与实现方式,包括目标范围内FIFO(Target-Scoped)、DMA FIFO以及点对点流(Peer-to-Peer)。 FIFO类型 **目标范围FIFO(Target-Sc

019、JOptionPane类的常用静态方法详解

目录 JOptionPane类的常用静态方法详解 1. showInputDialog()方法 1.1基本用法 1.2带有默认值的输入框 1.3带有选项的输入对话框 1.4自定义图标的输入对话框 2. showConfirmDialog()方法 2.1基本用法 2.2自定义按钮和图标 2.3带有自定义组件的确认对话框 3. showMessageDialog()方法 3.1

脏页的标记方式详解

脏页的标记方式 一、引言 在数据库系统中,脏页是指那些被修改过但还未写入磁盘的数据页。为了有效地管理这些脏页并确保数据的一致性,数据库需要对脏页进行标记。了解脏页的标记方式对于理解数据库的内部工作机制和优化性能至关重要。 二、脏页产生的过程 当数据库中的数据被修改时,这些修改首先会在内存中的缓冲池(Buffer Pool)中进行。例如,执行一条 UPDATE 语句修改了某一行数据,对应的缓