[DTS]设备树实践

2024-06-22 09:08
文章标签 实践 设备 dts

本文主要是介绍[DTS]设备树实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下内容以RK3288作为讲解

kernel\arch\arm\boot\dts\rk3288.dts

(1) 头文件

#include <dt-bindings/gpio/gpio.h>
#include <dt-bindings/interrupt-controller/irq.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/pinctrl/rockchip.h>
#include <dt-bindings/clock/rk3288-cru.h>
#include <dt-bindings/power/rk3288-power.h>
#include <dt-bindings/thermal/thermal.h>
#include <dt-bindings/power/rk3288-power.h>
#include <dt-bindings/soc/rockchip,boot-mode.h>

头文件里面定义了dts文件中使用的宏,比如下面:

interrupts = <GIC_SPI 151 IRQ_TYPE_LEVEL_HIGH>,<GIC_SPI 152 IRQ_TYPE_LEVEL_HIGH>,<GIC_SPI 153 IRQ_TYPE_LEVEL_HIGH>,<GIC_SPI 154 IRQ_TYPE_LEVEL_HIGH>;

GIC_SPIIRQ_TYPE_LEVEL_HIGH都是定义在头文件中的。

(2) 根节点

/ {#address-cells = <2>;#size-cells = <2>;compatible = "rockchip,rk3288";interrupt-parent = <&gic>;........
}
  • #address-cells和#size-cells决定子节点的reg属性值为
    < address1 length1 address2 length2>

  • compatible用来匹配machine_desc

  • interrupt-parent表示根节点所使用的中断控制器,如果子节点没有该属性,这和父节点共用。

(3) aliases(别名)

	aliases {ethernet0 = &gmac;i2c0 = &i2c0;i2c1 = &i2c1;i2c2 = &i2c2;i2c3 = &i2c3;i2c4 = &i2c4;i2c5 = &i2c5;mshc0 = &emmc;mshc1 = &sdmmc;mshc2 = &sdio0;mshc3 = &sdio1;serial0 = &uart0;serial1 = &uart1;serial2 = &uart2;serial3 = &uart3;serial4 = &uart4;spi0 = &spi0;spi1 = &spi1;spi2 = &spi2;};

定义节点别名

(4) arm-pmu(电源管理单元)

arm-pmu {compatible = "arm,cortex-a12-pmu";interrupts = <GIC_SPI 151 IRQ_TYPE_LEVEL_HIGH>,<GIC_SPI 152 IRQ_TYPE_LEVEL_HIGH>,<GIC_SPI 153 IRQ_TYPE_LEVEL_HIGH>,<GIC_SPI 154 IRQ_TYPE_LEVEL_HIGH>;interrupt-affinity = <&cpu0>, <&cpu1>, <&cpu2>, <&cpu3>;
};

这个节点的属性和属性值该如何定义?

  1. 到kernel\Documentation\devicetree\bindings\arm\pmu.txt查看文档说明,文档中给出了该节点的属性及说明。
  2. compatible属性,文档中给出了选项
"apm,potenza-pmu"
"arm,armv8-pmuv3"
"arm,cortex-a73-pmu"
"arm,cortex-a72-pmu"
"arm,cortex-a57-pmu"
"arm,cortex-a53-pmu"
"arm,cortex-a35-pmu"
"arm,cortex-a17-pmu"
"arm,cortex-a15-pmu"
"arm,cortex-a12-pmu"
"arm,cortex-a9-pmu"
"arm,cortex-a8-pmu"
"arm,cortex-a7-pmu"
"arm,cortex-a5-pmu"
"arm,arm11mpcore-pmu"
"arm,arm1176-pmu"
"arm,arm1136-pmu"
"brcm,vulcan-pmu"
"cavium,thunder-pmu"
"qcom,scorpion-pmu"
"qcom,scorpion-mp-pmu"
"qcom,krait-pmu"

然后根据cpu使用的arm核心版本来决定值,比如RK3288使用cortex-a12,所以选择"arm,cortex-a12-pmu"

  1. interrupts属性,文档中给出的解释是(1 combined interrupt or 1 per core)一个组合中断或一个核心一个中断。因为RK3288是4核的,所以interrupts组合了四个中断。然后每个中断对应的三个值。

为什么是三个值,每个值对应的含义是什么?

  1. 为什么是三个值,这跟中断控制器有关。上面说过子节点没有指定interrupt-parent属性,则和父节点共用,所以我们可以找到对应的中断控制器的定义。并找到它的compatible属性。
compatible = "arm,gic-400";

从上面的属性值可以找到中断控制器的类型为GIC (Generic Interrupt Controller),所以可以找到对应的说明文档kernel\Documentation\devicetree\bindings\interrupt-controller\arm,gic.txt

文档中说明GIC的**#interrupt-cells属性值应为3**,所以每个中断源对应三个值。
然后三个值对应的含义是什么,文档中也有解释。
1st cell:中断类型,0表示SPI中断,1表示PPI中断
2nd cell:该中断类型中的中断号,SPI中断的范围是[0-987], PPI中断范围是[0-15]
3rd cell : 标识, bit[3:0](1:上升沿触发 2:下降沿触发(SPI无效) 4:高电平触发 8:低电平触发(SPI无效) ) ; bit[15:8] (PPI中断掩码)

  1. <GIC_SPI 151 IRQ_TYPE_LEVEL_HIGH>含义
    中断类型: SPI(GIC_SPI定义在arm-gic.h中),SPI表示该中断是所有cpu core共享的
    中断号: 151, RK3288 datasheet中给出的值是从0~159,该值具体如何定义还不清楚。
    标识: 高电平,RK3288 datasheet中说“Input interrupt level is fixed , only high-level sensitive”(输入中断仅高电平有效)

  2. interrupt-affinity属性用来关联中断和cpu core, 这个属性是和interrupts中的值一一对应的。即:
    <GIC_SPI 151 IRQ_TYPE_LEVEL_HIGH> --------> cpu0
    <GIC_SPI 152 IRQ_TYPE_LEVEL_HIGH> --------> cpu1
    <GIC_SPI 153 IRQ_TYPE_LEVEL_HIGH> --------> cpu2
    <GIC_SPI 154 IRQ_TYPE_LEVEL_HIGH> --------> cpu3

当超过一个SPI时interrupt-affinity属性必须出现

(5) sdmmc(SDIO)

sdmmc: dwmmc@ff0c0000 {compatible = "rockchip,rk3288-dw-mshc";max-frequency = <150000000>;clocks = <&cru HCLK_SDMMC>, <&cru SCLK_SDMMC>,<&cru SCLK_SDMMC_DRV>, <&cru SCLK_SDMMC_SAMPLE>;clock-names = "biu", "ciu", "ciu-drive", "ciu-sample";fifo-depth = <0x100>;interrupts = <GIC_SPI 32 IRQ_TYPE_LEVEL_HIGH>;reg = <0x0 0xff0c0000 0x0 0x4000>;resets = <&cru SRST_MMC0>;reset-names = "reset";status = "disabled";
};
  1. 文档说明
    kernel\Documentation\devicetree\bindings\mmc\rockchip-dw-mshc.txt
    kernel\Documentation\devicetree\bindings\mmc\synopsy-dw-mshc.txt
    kernel\Documentation\devicetree\bindings\mmc\mmc.txt
    上面的文档对该节点中的属性都做了说明。

  2. max-frequency: 最大时钟频率,查看datasheet
    在这里插入图片描述

  3. clocks: 指定时钟单元和时钟阀门,这个要和clock-name一一对应的。这里指定了4个属性值,对应到clock-name也是四个属性值。

biu: bus interface unit(总线接口单元)
ciu: card interface unit(卡接口单元)
cru: clock reset unit(时钟复位单元)

  1. clock-names: 时钟名,和clocks一一对应
  2. fifo-depth: 输入输出(rx/tx)缓存的大小
  3. interrupts: 中断
  4. reg: 基地址和最大偏移量,为什么要用四个值(cell)呢?
    因为父节点#address-cells = <2> #size-cells = <2>, 主要是为了适配所有子节点,所以父节点多定义了一些cell。
    8)resets: 指定复位单元和复位说明符(指示哪个外设复位)。RK3288时钟单元和复位单元集成在同一个模块上(cru)。
  5. reset-names: 使用resets属性必须要有该属性,属性值必须是"reset"。
  6. status: 外设状态,两个取值: disabled和okay 。

(6) spi

spi0: spi@ff110000 {compatible = "rockchip,rk3288-spi", "rockchip,rk3066-spi";clocks = <&cru SCLK_SPI0>, <&cru PCLK_SPI0>;clock-names = "spiclk", "apb_pclk";dmas = <&dmac_peri 11>, <&dmac_peri 12>;dma-names = "tx", "rx";interrupts = <GIC_SPI 44 IRQ_TYPE_LEVEL_HIGH>;pinctrl-names = "default";pinctrl-0 = <&spi0_clk &spi0_tx &spi0_rx &spi0_cs0>;reg = <0x0 0xff110000 0x0 0x1000>;#address-cells = <1>;#size-cells = <0>;status = "disabled";
};
  1. dmas: 指定spi总线中MISO, MOSI所使用的DMA通道。
    在这里插入图片描述
  2. pinctrl-names: 引脚配置名称(引脚默认状态),属性值可以为"default"或"sleep"。
  3. pinctrl-0: 引脚引用列表,这里主要是spi的引脚。每个引用点都必须是引脚控制器下的子节点。
  4. #address-cells和#size-cells主要是为了挂接在spi上的设备准备的。

总结:
(1) 上面的讲解主要是语法实践和如何来查找说明文档来进行配置。对于做二次开发的人来说主要是看芯片原厂给的文档和查看Documention\devicetree下的文档。当然也可以看datasheet, 只是没太大必要,而且很多芯片厂家不会提供完整的datasheet.
(2) 如果是芯片原厂工程师,主要是根据datasheet和Documention\devicetree下的文档来配置。有时候还要自定义属性。
(3) 属性值得配置一定要和驱动匹配。

欢迎大家关注我的微信公众号!!

这篇关于[DTS]设备树实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083855

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬