C++进阶之AVL树

2024-06-22 07:28
文章标签 c++ 进阶 avl

本文主要是介绍C++进阶之AVL树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人主页:点我进入主页

专栏分类:C语言初阶  C语言进阶  数据结构初阶    Linux    C++初阶     C++进阶​    ​​​​算法

欢迎大家点赞,评论,收藏。

一起努力,一起奔赴大厂

目录

一.前言

二.插入

三.旋转 

3.1右旋

3.2左旋

3.3左右双旋

3.4右左双旋

四.测试


一.前言

        在看这篇博客之前需要了解二叉搜索树的相关内容,可以看这篇博客二叉搜索树,AVL树可以看成为了解决二叉搜索树的问题,它保证了左右子树高度差不超过1。本次的内容的重点就是对AVL树的旋转。

二.插入

        AVL树的插入规则和二叉搜索树的插入规则类似,左子树都小于父节点,右子树都大于父节点,在这里我们引入了一个平衡因子,我们先插入后然后进行调节平衡因子,平衡因子的计算=右子树的高度-左子树的高度,插入的新节点的平衡因子为0,当插入的节点在父节点的右边,父节点的平衡因子+1,当插入的节点在父节点的左边,父节点的平衡因子-1,当整后父节点的平衡因子为0时直接结束,不需要继续调整,当调整后父节点的平衡因子为+1或者-1时需要继续向上进行调整,当调整后父节点的平衡因子为+2或-2时需要进行旋转。我们看下面的代码实现:

bool insert(const pair<K, V>& kv)
{Node* newnode = new Node(kv);if (_root == nullptr) _root = newnode;else{Node* cur = _root, * parent = nullptr;while (cur){if (kv.first < cur->_kv.first){parent = cur;cur = cur->_left;}else if (kv.first > cur->_kv.first) {parent = cur;cur = cur->_right;}else  return false;}if (kv.first < parent->_kv.first) parent->_left = newnode;else parent->_right = newnode;newnode->_parent = parent;//调整平衡因子while (parent){if (newnode == parent->_left) parent->_bf--;else parent->_bf++;if (parent->_bf == 0) break;else if (parent->_bf == 1 || parent->_bf == -1){newnode = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){if (parent->_bf == 2 && newnode->_bf == 1){RatoteL(parent);}else if (parent->_bf == -2 && newnode->_bf == -1){RatoteR(parent);}else if (parent->_bf == 2 && newnode->_bf == -1){RatoteRL(parent);}else if (parent->_bf == -2 && newnode->_bf == 1){RatoteLR(parent);}else{assert(false);}break;}else{assert(false);}}}return true;
}

三.旋转 

        旋转有4种方式:向右旋转,向左旋转,左右双旋,右左双旋这四种

3.1右旋

        看下面的抽象图

 当n=0时全图为

当n=1时全图为

当n=2时我们有3种,但是在a的位置能放第3种,因为别的会自动进行旋转,b和c这三种都可以

  当n=3时就会更多,所以这是列举不完的,针对右旋我们以下面这张图为例:

我们经过右旋后转化成下面的样子,针对的主要就是这几个节点

 

在旋转的过程中需要注意的是,parent节点是不是根节点,注意调整后subL节点的的父节点的调整,还有一点就是subLR是否为空节点,调整后需要将subL节点和parent节点的bf值改为0,我们看下面的代码:

	void RatoteR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;subL->_right = parent;parent->_left = subLR;Node* ppNode = parent->_parent;subL->_parent = parent->_parent;parent->_parent = subL;if (subLR)subLR->_parent = parent;if (parent == _root){_root = subL;}else{if (ppNode->_left == parent)ppNode->_left = subL;elseppNode->_right = subL;}subL->_bf = parent->_bf = 0;}

3.2左旋

        左旋的代码和右旋的类似,不过需要调节的平衡因子为2和1,我们看下面的图片

我们直接上代码:

void RatoteL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;Node* ppNode = parent->_parent;parent->_parent = subR;subR->_left = parent;subR->_parent = ppNode;if (parent == _root){_root = subR;}else{if (ppNode->_left == parent)ppNode->_left = subR;elseppNode->_right = subR;}subR->_bf = parent->_bf = 0;
}
void RatoteRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RatoteR(subR);RatoteL(parent);if (bf == 1){parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;}}

3.3左右双旋

        左右双旋的图片可以看为下面的抽象图:

当我们在b位置插入后再旋转,可以得到:

当我们插入到c位置后再经过旋转,可以得到:

 

当只旋转一次就会做一次镜像旋转,我们先让subL节点左旋,然后让parent右旋,然后进行调节平衡因子,我们看代码:

void RatoteLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RatoteL(subL);RatoteR(parent);if (bf == 1){subL->_bf = -1;}else if (bf == -1){parent->_bf = 1;}
}

3.4右左双旋

        这个和左右双旋类似,我们直接看代码:

	void RatoteRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RatoteR(subR);RatoteL(parent);if (bf == 1){parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;}}

四.测试

        我们直接上代码:

public:	void InOrder(){_InOrder(_root);}bool IsBalance(){return _IsBalance(_root);}
private:void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << "->" << root->_kv.second << endl;int left = _height(root->_left);int right = _height(root->_right);int sub = abs(left - right);cout << "bf-> " << sub<<endl;if (sub >= 2) cout<<"key-> "<< root->_kv.first << endl;_InOrder(root->_right);}int _height(Node* root){if (root == nullptr)return 0;int x = 1 + _height(root->_left);int y = 1 + _height(root->_right);return max(x , y);}bool _IsBalance(Node* root){		if (root == nullptr) return true;int left = _height(root->_left);int right = _height(root->_right);if (abs(right - left) >= 2){return false;}return _IsBalance(root->_left) && _IsBalance(root->_right);}

测试代码:

int main()
{srand(0);AVLTree<int, int> a;vector<int> v;for (int i = 0; i < 1000000; i++){int num = rand() + i;v.push_back(num);}cout << a.IsBalance() << endl;return 0;
}

运行可以看到:

这篇关于C++进阶之AVL树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083661

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

[MySQL表的增删改查-进阶]

🌈个人主页:努力学编程’ ⛅个人推荐: c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 💻💻💻数据库约束 🔭🔭🔭约束类型 not null: 指示某列不能存储 NULL 值unique: 保证某列的每行必须有唯一的值default: 规定没有给列赋值时的默认值.primary key:

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝