VS2010 CUDA8.0 工程配置

2024-06-22 06:48
文章标签 配置 工程 vs2010 cuda8.0

本文主要是介绍VS2010 CUDA8.0 工程配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.打开vs2010,创建win32控制台项目,命名为cuda_test,点确定
这里写图片描述

2.勾选空项目
这里写图片描述

3.右键”源文件”目录,选择 “添加–新建项”
这里写图片描述

4.左侧选择NVIDIA CUDA8.0,在中间图标处选择CUDA/C file,命名为test
这里写图片描述

5.右键cuda项目–生成自定义

6.勾选CUDA8.0
这里写图片描述

7.右键刚才创建的test.cu文件.左侧选”配置属性–常规”,在右边选择项类型,下拉菜单中选CUDA
这里写图片描述

8.在test.cu文件中添加cuda代码(见文末)

9.右键cuda项目——属性——配置属性——CUDA C/C++——常规——附加包含目录,增加一项:
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\common\inc
这里写图片描述
该操作为是为了使工程找到所需的头文件

<helper_string.h>
<helper_cuda.h>
<helper_functions.h>

一般默认安装在路径
C:\ProgramData\NVIDIACorporation\CUDA Samples\v8.0\common\inc

10.在链接器–输入–附加依赖项,点击下拉编辑,添加一条cudart.lib,否则会报错无法生成项目
这里写图片描述

11.开始运行,如图所示则创建成功
这里写图片描述

附录:test.cu
(引用自cuda源码示例的vectorAdd)

/*** Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.** Please refer to the NVIDIA end user license agreement (EULA) associated* with this source code for terms and conditions that govern your use of* this software. Any use, reproduction, disclosure, or distribution of* this software and related documentation outside the terms of the EULA* is strictly prohibited.**//*** Vector addition: C = A + B.** This sample is a very basic sample that implements element by element* vector addition. It is the same as the sample illustrating Chapter 2* of the programming guide with some additions like error checking.*/#include <stdio.h>// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>#include <helper_cuda.h>
/*** CUDA Kernel Device code** Computes the vector addition of A and B into C. The 3 vectors have the same* number of elements numElements.*/
__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < numElements){C[i] = A[i] + B[i];}
}/*** Host main routine*/
int
main(void)
{// Error code to check return values for CUDA callscudaError_t err = cudaSuccess;// Print the vector length to be used, and compute its sizeint numElements = 50000;size_t size = numElements * sizeof(float);printf("[Vector addition of %d elements]\n", numElements);// Allocate the host input vector Afloat *h_A = (float *)malloc(size);// Allocate the host input vector Bfloat *h_B = (float *)malloc(size);// Allocate the host output vector Cfloat *h_C = (float *)malloc(size);// Verify that allocations succeededif (h_A == NULL || h_B == NULL || h_C == NULL){fprintf(stderr, "Failed to allocate host vectors!\n");exit(EXIT_FAILURE);}// Initialize the host input vectorsfor (int i = 0; i < numElements; ++i){h_A[i] = rand()/(float)RAND_MAX;h_B[i] = rand()/(float)RAND_MAX;}// Allocate the device input vector Afloat *d_A = NULL;err = cudaMalloc((void **)&d_A, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Allocate the device input vector Bfloat *d_B = NULL;err = cudaMalloc((void **)&d_B, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector B (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Allocate the device output vector Cfloat *d_C = NULL;err = cudaMalloc((void **)&d_C, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy the host input vectors A and B in host memory to the device input vectors in// device memoryprintf("Copy input data from the host memory to the CUDA device\n");err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector B from host to device (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Launch the Vector Add CUDA Kernelint threadsPerBlock = 256;int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);err = cudaGetLastError();if (err != cudaSuccess){fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy the device result vector in device memory to the host result vector// in host memory.printf("Copy output data from the CUDA device to the host memory\n");err = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector C from device to host (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Verify that the result vector is correctfor (int i = 0; i < numElements; ++i){if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5){fprintf(stderr, "Result verification failed at element %d!\n", i);exit(EXIT_FAILURE);}}printf("Test PASSED\n");// Free device global memoryerr = cudaFree(d_A);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector A (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaFree(d_B);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector B (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaFree(d_C);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector C (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Free host memoryfree(h_A);free(h_B);free(h_C);printf("Done\n");return 0;
}

这篇关于VS2010 CUDA8.0 工程配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083584

相关文章

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Jenkins分布式集群配置方式

《Jenkins分布式集群配置方式》:本文主要介绍Jenkins分布式集群配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装jenkins2.配置集群总结Jenkins是一个开源项目,它提供了一个容易使用的持续集成系统,并且提供了大量的plugin满

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

SQL Server配置管理器无法打开的四种解决方法

《SQLServer配置管理器无法打开的四种解决方法》本文总结了SQLServer配置管理器无法打开的四种解决方法,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录方法一:桌面图标进入方法二:运行窗口进入检查版本号对照表php方法三:查找文件路径方法四:检查 S