VS2010 CUDA8.0 工程配置

2024-06-22 06:48
文章标签 配置 工程 vs2010 cuda8.0

本文主要是介绍VS2010 CUDA8.0 工程配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.打开vs2010,创建win32控制台项目,命名为cuda_test,点确定
这里写图片描述

2.勾选空项目
这里写图片描述

3.右键”源文件”目录,选择 “添加–新建项”
这里写图片描述

4.左侧选择NVIDIA CUDA8.0,在中间图标处选择CUDA/C file,命名为test
这里写图片描述

5.右键cuda项目–生成自定义

6.勾选CUDA8.0
这里写图片描述

7.右键刚才创建的test.cu文件.左侧选”配置属性–常规”,在右边选择项类型,下拉菜单中选CUDA
这里写图片描述

8.在test.cu文件中添加cuda代码(见文末)

9.右键cuda项目——属性——配置属性——CUDA C/C++——常规——附加包含目录,增加一项:
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\common\inc
这里写图片描述
该操作为是为了使工程找到所需的头文件

<helper_string.h>
<helper_cuda.h>
<helper_functions.h>

一般默认安装在路径
C:\ProgramData\NVIDIACorporation\CUDA Samples\v8.0\common\inc

10.在链接器–输入–附加依赖项,点击下拉编辑,添加一条cudart.lib,否则会报错无法生成项目
这里写图片描述

11.开始运行,如图所示则创建成功
这里写图片描述

附录:test.cu
(引用自cuda源码示例的vectorAdd)

/*** Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.** Please refer to the NVIDIA end user license agreement (EULA) associated* with this source code for terms and conditions that govern your use of* this software. Any use, reproduction, disclosure, or distribution of* this software and related documentation outside the terms of the EULA* is strictly prohibited.**//*** Vector addition: C = A + B.** This sample is a very basic sample that implements element by element* vector addition. It is the same as the sample illustrating Chapter 2* of the programming guide with some additions like error checking.*/#include <stdio.h>// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>#include <helper_cuda.h>
/*** CUDA Kernel Device code** Computes the vector addition of A and B into C. The 3 vectors have the same* number of elements numElements.*/
__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < numElements){C[i] = A[i] + B[i];}
}/*** Host main routine*/
int
main(void)
{// Error code to check return values for CUDA callscudaError_t err = cudaSuccess;// Print the vector length to be used, and compute its sizeint numElements = 50000;size_t size = numElements * sizeof(float);printf("[Vector addition of %d elements]\n", numElements);// Allocate the host input vector Afloat *h_A = (float *)malloc(size);// Allocate the host input vector Bfloat *h_B = (float *)malloc(size);// Allocate the host output vector Cfloat *h_C = (float *)malloc(size);// Verify that allocations succeededif (h_A == NULL || h_B == NULL || h_C == NULL){fprintf(stderr, "Failed to allocate host vectors!\n");exit(EXIT_FAILURE);}// Initialize the host input vectorsfor (int i = 0; i < numElements; ++i){h_A[i] = rand()/(float)RAND_MAX;h_B[i] = rand()/(float)RAND_MAX;}// Allocate the device input vector Afloat *d_A = NULL;err = cudaMalloc((void **)&d_A, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Allocate the device input vector Bfloat *d_B = NULL;err = cudaMalloc((void **)&d_B, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector B (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Allocate the device output vector Cfloat *d_C = NULL;err = cudaMalloc((void **)&d_C, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy the host input vectors A and B in host memory to the device input vectors in// device memoryprintf("Copy input data from the host memory to the CUDA device\n");err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector B from host to device (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Launch the Vector Add CUDA Kernelint threadsPerBlock = 256;int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);err = cudaGetLastError();if (err != cudaSuccess){fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy the device result vector in device memory to the host result vector// in host memory.printf("Copy output data from the CUDA device to the host memory\n");err = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector C from device to host (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Verify that the result vector is correctfor (int i = 0; i < numElements; ++i){if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5){fprintf(stderr, "Result verification failed at element %d!\n", i);exit(EXIT_FAILURE);}}printf("Test PASSED\n");// Free device global memoryerr = cudaFree(d_A);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector A (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaFree(d_B);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector B (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaFree(d_C);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector C (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Free host memoryfree(h_A);free(h_B);free(h_C);printf("Done\n");return 0;
}

这篇关于VS2010 CUDA8.0 工程配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083584

相关文章

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d