VS2010 CUDA8.0 工程配置

2024-06-22 06:48
文章标签 配置 工程 vs2010 cuda8.0

本文主要是介绍VS2010 CUDA8.0 工程配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.打开vs2010,创建win32控制台项目,命名为cuda_test,点确定
这里写图片描述

2.勾选空项目
这里写图片描述

3.右键”源文件”目录,选择 “添加–新建项”
这里写图片描述

4.左侧选择NVIDIA CUDA8.0,在中间图标处选择CUDA/C file,命名为test
这里写图片描述

5.右键cuda项目–生成自定义

6.勾选CUDA8.0
这里写图片描述

7.右键刚才创建的test.cu文件.左侧选”配置属性–常规”,在右边选择项类型,下拉菜单中选CUDA
这里写图片描述

8.在test.cu文件中添加cuda代码(见文末)

9.右键cuda项目——属性——配置属性——CUDA C/C++——常规——附加包含目录,增加一项:
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\common\inc
这里写图片描述
该操作为是为了使工程找到所需的头文件

<helper_string.h>
<helper_cuda.h>
<helper_functions.h>

一般默认安装在路径
C:\ProgramData\NVIDIACorporation\CUDA Samples\v8.0\common\inc

10.在链接器–输入–附加依赖项,点击下拉编辑,添加一条cudart.lib,否则会报错无法生成项目
这里写图片描述

11.开始运行,如图所示则创建成功
这里写图片描述

附录:test.cu
(引用自cuda源码示例的vectorAdd)

/*** Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.** Please refer to the NVIDIA end user license agreement (EULA) associated* with this source code for terms and conditions that govern your use of* this software. Any use, reproduction, disclosure, or distribution of* this software and related documentation outside the terms of the EULA* is strictly prohibited.**//*** Vector addition: C = A + B.** This sample is a very basic sample that implements element by element* vector addition. It is the same as the sample illustrating Chapter 2* of the programming guide with some additions like error checking.*/#include <stdio.h>// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>#include <helper_cuda.h>
/*** CUDA Kernel Device code** Computes the vector addition of A and B into C. The 3 vectors have the same* number of elements numElements.*/
__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < numElements){C[i] = A[i] + B[i];}
}/*** Host main routine*/
int
main(void)
{// Error code to check return values for CUDA callscudaError_t err = cudaSuccess;// Print the vector length to be used, and compute its sizeint numElements = 50000;size_t size = numElements * sizeof(float);printf("[Vector addition of %d elements]\n", numElements);// Allocate the host input vector Afloat *h_A = (float *)malloc(size);// Allocate the host input vector Bfloat *h_B = (float *)malloc(size);// Allocate the host output vector Cfloat *h_C = (float *)malloc(size);// Verify that allocations succeededif (h_A == NULL || h_B == NULL || h_C == NULL){fprintf(stderr, "Failed to allocate host vectors!\n");exit(EXIT_FAILURE);}// Initialize the host input vectorsfor (int i = 0; i < numElements; ++i){h_A[i] = rand()/(float)RAND_MAX;h_B[i] = rand()/(float)RAND_MAX;}// Allocate the device input vector Afloat *d_A = NULL;err = cudaMalloc((void **)&d_A, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Allocate the device input vector Bfloat *d_B = NULL;err = cudaMalloc((void **)&d_B, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector B (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Allocate the device output vector Cfloat *d_C = NULL;err = cudaMalloc((void **)&d_C, size);if (err != cudaSuccess){fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy the host input vectors A and B in host memory to the device input vectors in// device memoryprintf("Copy input data from the host memory to the CUDA device\n");err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector B from host to device (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Launch the Vector Add CUDA Kernelint threadsPerBlock = 256;int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);err = cudaGetLastError();if (err != cudaSuccess){fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy the device result vector in device memory to the host result vector// in host memory.printf("Copy output data from the CUDA device to the host memory\n");err = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);if (err != cudaSuccess){fprintf(stderr, "Failed to copy vector C from device to host (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Verify that the result vector is correctfor (int i = 0; i < numElements; ++i){if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5){fprintf(stderr, "Result verification failed at element %d!\n", i);exit(EXIT_FAILURE);}}printf("Test PASSED\n");// Free device global memoryerr = cudaFree(d_A);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector A (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaFree(d_B);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector B (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}err = cudaFree(d_C);if (err != cudaSuccess){fprintf(stderr, "Failed to free device vector C (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Free host memoryfree(h_A);free(h_B);free(h_C);printf("Done\n");return 0;
}

这篇关于VS2010 CUDA8.0 工程配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083584

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

springboot security之前后端分离配置方式

《springbootsecurity之前后端分离配置方式》:本文主要介绍springbootsecurity之前后端分离配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的... 目录前言自定义配置认证失败自定义处理登录相关接口匿名访问前置文章总结前言spring boot secu

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

Spring Boot结成MyBatis-Plus最全配置指南

《SpringBoot结成MyBatis-Plus最全配置指南》本文主要介绍了SpringBoot结成MyBatis-Plus最全配置指南,包括依赖引入、配置数据源、Mapper扫描、基本CRUD操... 目录前言详细操作一.创建项目并引入相关依赖二.配置数据源信息三.编写相关代码查zsRArly询数据库数

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

如何自定义Nginx JSON日志格式配置

《如何自定义NginxJSON日志格式配置》Nginx作为最流行的Web服务器之一,其灵活的日志配置能力允许我们根据需求定制日志格式,本文将详细介绍如何配置Nginx以JSON格式记录访问日志,这种... 目录前言为什么选择jsON格式日志?配置步骤详解1. 安装Nginx服务2. 自定义JSON日志格式各

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实